Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (4): 333-338    DOI: 10.11902/1005.4537.2013.155
  论文 本期目录 | 过刊浏览 |
X65碳钢在模拟油田采出水中的阴极保护研究
邱景1, 杜敏1, 陆原2, 张颖2, 郭海军2, 李成杰1
1. 中国海洋大学化学化工学院 海洋化学理论与工程技术教育部重点实验室 青岛 266100; 2. 中海油能源发展采油技术服务分公司 天津 300452
Cathodic Protection of X65 Carbon Steel in a Simulated Oilfield Produced Water
QIU Jing1, DU Min1, LU Yuan2, ZHANG Ying2, GUO Haijun2, LI Chengjie1
1. Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; 2. CNOOC-ETS-Oilfield Technology Services Co., Tianjin 300452, China
全文: PDF(3269 KB)   HTML
摘要: 采用极化曲线、恒电位阴极极化和失重法,并结合SEM,EDS和XRD分析产物的形貌、成分和结构,研究了不同保护电位下X65碳钢的保护效果和机制。结果表明:该环境中,自腐蚀条件下的X65碳钢发生严重腐蚀,失重速率大,坑蚀严重;-800~-1000 mV的保护电位对X65碳钢的腐蚀均有明显抑制效果;-800 mV阴极保护电位下X65碳钢表面无良好的钙质沉积层形成,-900 mV下表面能生成牢固致密的钙质沉积层,有效降低保护电流密度,-1000 mV下沉积层容易因析氢反应而鼓泡脱落;相比于海洋环境,X65碳钢在油田采出水中的析氢电位偏正,沉积层中不含Mg(OH)2
关键词 X65碳钢模拟油田采出水阴极保护钙质沉积层    
Abstract:The effectiveness of cathodic protection for X65 carbon steel in a simulated oilfield produced water was examined by means of measurements of polarization curve, constant potential cathodic polarization and weight loss. Then the morphology, composition and constituent of the corrosion products were characterized by SEM, EDS and XRD. The result indicates: in the simulated oilfield produced water, X65 carbon steel suffered from serious pitting corrosion with a great weight loss rate; the cathodic protection potential in a range -800 mV to -1000 mV exhibits obvious inhibition effect on corrosion of X65 in the environment; a sound scale of calcareous deposits can't formed on the surface of carbon steel by the potential of -800 mV, a dense and good adhesive scale of deposits may formed by -900 mV on the steel surface, resulting effectively in reduction of the cathodic protection current density. The deposits blister and easily spall off due to hydrogen evolution by potential -1000 mV. In comparison with the circumstance in seawater, hydrogen evolution potential of X65 carbon steel is much positive in the simulated oilfield produced water and the deposits do not contain magnesium hydroxide.
Key wordsX65 carbon steel    simulated oilfield produced water    cathodic protection    calcareous deposits
收稿日期: 2013-08-26     
ZTFLH:  TG174.3  
通讯作者: 通讯作者:杜敏,E-mail:ssdm99@ouc.edu.cn     E-mail: ssdm99@ouc.edu.cn
作者简介: 邱景,女,1989年生,硕士生,研究方向为金属腐蚀与防护

引用本文:

邱景, 杜敏, 陆原, 张颖, 郭海军, 李成杰. X65碳钢在模拟油田采出水中的阴极保护研究[J]. 中国腐蚀与防护学报, 2014, 34(4): 333-338.
QIU Jing, DU Min, LU Yuan, ZHANG Ying, GUO Haijun, LI Chengjie. Cathodic Protection of X65 Carbon Steel in a Simulated Oilfield Produced Water. Journal of Chinese Society for Corrosion and protection, 2014, 34(4): 333-338.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.155      或      https://www.jcscp.org/CN/Y2014/V34/I4/333

[1] Qu H, Ma Z H, Guan S F, et al. Corrosion and protection of dissolved gases in produced water from oil field [J]. Environ. Sci. Technol., 2011, 24(2): 65-69 (曲虎, 马梓涵, 管善峰等. 油田采出水中溶解性气体的腐蚀与防护 [J]. 环境科学, 2011, 24(2): 65-69)
[2] Yin Z F, Liu L, Zhang Y Q, et al. Characteristics and mechanism of?corrosion?film formation on antisulphur steels in CO 2 /H 2 S environments [J]. Corros. Eng. Sci. Technol., 2012, 47(2): 138-144
[3] Ren C Q, Wang X, Liu L, et al. Lab and field investigations on localized?corrosion?of casing [J]. Mater. Corros., 2012, 63(2): 168-172
[4] Zhang X J, Ji W, Wang B H, et al. Study on the treatment technology of oilfield produced water [J]. Ind. Safety Environ. Prot., 2007, 33(4): 13-16 (张学佳, 纪巍, 王宝辉等. 油田采出水处理技术进展 [J]. 工业安全与环保, 2007, 33(4): 13-16)
[5] Cheng L H, Bi X J, Ni Y T. Oilfield?produced water treatment by ozone-enhanced flocculation [J]. Energy Educ. Sci. Technol., 2012,
[6] Wei D, Wang H Y, Zhu S D, et al. Corrosion behavior of low-nickel alloy steels in a simulated oilfield environment containing carbon dioxide [J]. Proc. Inst. Mech. Eng. B-J. Eng. Ma., 2012, 266(A11): 1891-1899
[7] Han J. Research of the treatment technology of oilfield produced water [J]. China Chem. Trade, 2012, (4): 278 (韩剑. 油田采出水处理技术方法研究 [J]. 中国化工贸易, 2012, (4): 278)
[8] Horsup D I, Clark J C, Binks B P, et al. The fate of?oilfield?corrosion?inhibitors in multiphase systems [J]. Corrosion, 2010, 66(3): 036001
[9] Mohammed K Z, Hamdy A, Abdel-Wahab A, et al. Temperature effect on?corrosion?inhibition of carbon steel in formation water by non-ionic inhibitor and synergistic influence of halide ions [J]. Life Sci. J., 2012, 9(2): 424-434
[10] Alikin I N, Malkov Y K, Khan S V. Corrosion Inhibitor in Mineralised Hydrogen Sulphide-containing Oilfield Media [P]. Russia: RU2454488-C1, 2012
[11] Hartt W H. 2012 Frank Newman Speller Award: cathodic protection of offshore structures-history and current status [J]. Corrosion, 2012, 68(12): 1063-1075
[12] Neville A, Morizot A P. Calcareous scales formed by cathodic protection-an assessment of characteristics and kinetics [J]. Cryst. Growth, 2002, 234: 490-502
[13] Yan J F, Nyuyen T V, White R E, et al. Mathematical modeling of the formation of calcareous deposits on cathodically protected steel in seawater [J]. Electrochem. Soc., 1993, 140(3): 733-744
[14] Lajevardi S A, Tafreshi H, Shahrabi T. Investigation of calcareous deposits formation on 5052 aluminium alloy under cathodic polarisation in natural and artificial sea water [J]. Corros. Eng. Sci. Technol., 2011, 46(3): 249-255
[15] Cabrini M, Lorenzi S, Marcassoli P, et al. Effect of hydrogen diffusion on environmental assisted cracking of pipeline steels under cathodic protection [J]. Metall. Ital., 2008, (2): 15-22
[16] Honarvar Nazari M, Allahkaram S R, Kermani M B. The effects of temperature and pH on the characteristics of corrosion product in CO 2 corrosion of grade X70 steel [J]. Mater. Design, 2010, 31: 3559-3563
[17] M?ller H. The influence of Mg 2+ on the formation of calcareous deposits on a freely corroding low carbon steel in seawater [J]. Corros. Sci., 2007, 49: 1992-2001
[18] Li C J, Du M, Li Y, et al. The influences of protection potentials on the formation of calcareous deposits in dynamic seawater [J]. Periodical Ocean Univ. China, 2011, 41 (7/8): 149-153 (李成杰, 杜敏, 李妍等. 动态海水中保护电位对钙质沉积层形成的影响 [J]. 中国海洋大学学报, 2011, 41(7/8): 149-153)
[19] Li C J, Du M. Research and development of cathodic protection for steel materials in deep seawater [J]. J. Chin. Soc. Corros. Prot., 2013, 33(1): 10-15 (李成杰, 杜敏. 深海钢铁材料的阴极保护技术研究及发展 [J]. 中国腐蚀与防护学报, 2013, 33(1): 10-15)
[1] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[2] 梁毅, 杜艳霞. 交流干扰和阴极保护协同作用下的腐蚀评判标准与机理研究进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[3] 解璇, 刘莉, 王福会. TiO2的制备及表面修饰工艺对其光电化学阴极保护性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 123-130.
[4] 赵书彦,童鑫红,刘福春,翁金钰,韩恩厚,郦晓慧,杨林. 环氧富锌涂层防腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
[5] 王贵容,邵亚薇,王艳秋,孟国哲,刘斌. 阴极保护电位对破损环氧涂层阴极剥离的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 235-244.
[6] 廖彤,马峥,李蕾蕾,马秀敏,王秀通,侯保荣. Fe2O3/TiO2纳米复合材料对304不锈钢的光生阴极保护性能[J]. 中国腐蚀与防护学报, 2019, 39(1): 36-42.
[7] 邱萍, 杨连捷, 宋玉, 杨鸿飞. 添加DMF对TiO2薄膜光生阴极保护性能影响研究[J]. 中国腐蚀与防护学报, 2018, 38(3): 289-295.
[8] 寇杰, 张新策, 崔淦, 杨宝安. 储罐底板阴极保护电位分布研究进展[J]. 中国腐蚀与防护学报, 2017, 37(4): 305-314.
[9] 王晓霖, 闫茂成, 舒韵, 孙成, 柯伟. 破损涂层下管线钢的交流电干扰腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(4): 341-346.
[10] 王廷勇,马兰英,汪相辰,张海兵,陈凯,闫永贵. 某核电站凝汽器在海水中阴极保护参数的研究及应用[J]. 中国腐蚀与防护学报, 2016, 36(6): 624-630.
[11] 杨霜,唐囡,闫茂成,赵康文,孙成,许进,于长坤. 温度对X80管线钢酸性红壤腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2015, 35(3): 227-232.
[12] 刘在健,王佳,张彭辉,王燕华,张源. 5083铝合金在海水中的腐蚀行为及其阴极保护研究[J]. 中国腐蚀与防护学报, 2015, 35(3): 239-244.
[13] 许洪梅, 柳伟, 曹立新, 苏革, 高荣杰. 304不锈钢表面ZnO/TiO2复合薄膜的制备与光生阴极防腐蚀性能研究[J]. 中国腐蚀与防护学报, 2014, 34(6): 507-514.
[14] 范丰钦, 宋积文, 李成杰, 杜敏. 海水流速对DH36平台钢阴极保护的影响[J]. 中国腐蚀与防护学报, 2014, 34(6): 550-557.
[15] 林永华, 张雪峰, 韩利, 张兰河. 变电站接地网的防腐方法研究[J]. 中国腐蚀与防护学报, 2013, 33(6): 501-506.