Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (3): 271-276    DOI: 10.11902/1005.4537.2013.152
  本期目录 | 过刊浏览 |
磷酸三乙酯与稀土铈 (IV) 离子在盐酸溶液中对Cu的缓蚀协同效应
曾慧晶1, 李光勇2, 吴欢1, 高立新1, 张大全1()
1. 上海电力学院环境与化学工程学院 上海 200090
2. 河南省医药技师学院制药工程系 开封 475004
Synergistic Effect of Triethyl Phosphate and Cerium (IV) Ion on Corrosion Inhibition for Copper in Hydrochloric Acid Solution
ZENG Huijing1, LI Guangyong2, WU Huan1, GAO Lixin1, ZHANG Daquan1()
1. School of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
2. Department of Pharmaceutical Engineering, Henan College of Medical Technician, Kaifeng 475004, China
全文: PDF(806 KB)   HTML
摘要: 

采用电化学阻抗和动电位极化曲线研究了磷酸三乙酯 (TEP) 对Cu在0.5 mol/L盐酸溶液中的缓蚀作用,考察了TEP与稀土Ce4+对Cu在0.5 mol/L盐酸溶液中的协同作用。结果表明,在TEP浓度不变的情况下,随着Ce4+浓度的增加,缓蚀率先增后减,当Ce4+浓度为1.0 mmol/L时,缓蚀效果最好。在Ce4+浓度不变的情况下,随着TEP浓度的增加,缓蚀率逐渐增大。当复配缓蚀剂浓度为1 mmol/L Ce4++58.7 mmol/L TEP时,其缓蚀率达到最大,为80.6%。

关键词 磷酸三乙酯Ce4+Cu缓蚀协同效应    
Abstract

The inhibition effect of triethyl phosphate (TEP) and the synergistic effect of TEP and rare earth Ce4+ on the corrosion of copper in 0.5 mol/L hydrochloric acid solution were studied by electrochemical impedance spectra and potentiodynamic polarization curve. The result reveals that the inhibition efficiency of the mixed inhibitor increases with the increase of the concentration of Ce4+ until the critical concentration is reached when TEP concentration remains unchanged. When Ce4+ concentration remains unchanged, the inhibition efficiency increased with the increase of the concentration of TEP, reaching 80.6% at 1 mmol/L Ce4+ and 58.7 mmol/L TEP.

Key wordstriethyl phosphate    Ce4+    copper    corrosion inhibition    synergism
收稿日期: 2013-07-31     
ZTFLH:  TG174.42  
基金资助:国家自然科学基金项目(20776083和20911140272)资助
作者简介: null

曾慧晶,男,1986年生,硕士生,研究方向为金属腐蚀与防护

引用本文:

曾慧晶, 李光勇, 吴欢, 高立新, 张大全. 磷酸三乙酯与稀土铈 (IV) 离子在盐酸溶液中对Cu的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2014, 34(3): 271-276.
Huijing ZENG, Guangyong LI, Huan WU, Lixin GAO, Daquan ZHANG. Synergistic Effect of Triethyl Phosphate and Cerium (IV) Ion on Corrosion Inhibition for Copper in Hydrochloric Acid Solution. Journal of Chinese Society for Corrosion and protection, 2014, 34(3): 271-276.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.152      或      https://www.jcscp.org/CN/Y2014/V34/I3/271

图1  
图2  
Inhibitor Qdl Rct Qa Ra W η
mmol/L Y0 / μSsncm-2 n1 Ωcm2 Y0 / μSsncm-2 n2 Ωcm2 Ss0.5cm-2 %
Blank 1304 0.64 213.4 --- --- --- 23.5×10-3 ---
5.87 TEP 738.4 0.76 276.1 276.8 0.82 19.45 8.15×10-3 27.8
29.35 TEP 837.1 0.75 255.6 246.7 0.82 23.06 14.5×10-3 23.4
58.7 TEP 859.0 0.73 354.4 211.7 0.85 31.97 14.2×10-3 44.8
表1  Cu电极在0.5 mol/L盐酸中浸泡1 h后的电化学阻抗参数
图3  
图4  
Inhibitor Qdl Rct Qa Ra W η
mmol/L Y0 / μSsncm-2 n1 Ωcm2 Y0 / μSsncm-2 n2 Ωcm2 Ss0.5cm-2 %
Blank 1304 0.64 213.4 --- --- --- 23.5×10-3 ---
5.87 TEP+0.5 Ce4+ 214.2 0.91 401.2 1011 0.71 10.85 6.99×10-3 48.2
5.87 TEP+1.0 Ce4+ 235.6 0.87 638.0 955.3 0.72 29.44 4.92×10-3 68.0
5.87 TEP+2.0 Ce4+ 359.3 0.82 288.6 820.8 0.75 15.67 9.75×10-3 29.9
29.3 TEP+0.5 Ce4+ 248.1 0.87 507.0 862.9 0.73 31.58 6.42×10-3 60.4
29.4 TEP+1.0 Ce4+ 148.6 0.94 785.0 853.6 0.70 24.58 4.38×10-3 73.6
29.4 TEP+2.0 Ce4+ 146.1 0.90 535.9 814.2 0.73 32.37 4.99×10-3 62.4
58.7 TEP+0.5 Ce4+ 219.8 0.86 618.6 930.1 0.74 57.70 5.11×10-3 68.4
58.7 TEP+1.0 Ce4+ 168.0 0.87 1025.0 887.5 0.74 76.03 2.97×10-3 80.6
58.7 TEP+2.0 Ce4+ 152.2 0.86 835.6 701.5 0.73 84.99 4.87×10-3 76.8
表2  Cu电极在含不同缓蚀剂的0.5 mol/L盐酸溶液中浸泡1 h后的电化学阻抗参数
图5  
图6  
Inhibitor / mmolL-1 icorr / μAcm-2 Ecorr / mV Ba / mVdec-1 Bc / mVdec-1 η / %
Blank 8.5750 -230.88 52.66 252.78 ---
5.87 TEP 6.6903 -217.32 53.06 178.68 22.0
29.35 TEP 6.3055 -214.01 53.44 186.63 26.5
58.7 TEP 3.3431 -237.40 58.75 126.52 61.0
表3  Cu电极在加有不同浓度TEP的0.5 mol/L盐酸溶液中浸泡1 h后的极化曲线电化学参数
Inhibitor / mmolL-1 icorr / μAcm-2 Ecorr / mV Ba / mVdec-1 Bc / mVdec-1 η / %
Blank 8.5750 -230.88 52.66 252.78 ---
5.87 TEP+1.0 Ce4+ 3.0391 -244.16 57.61 155.28 64.6
29.35 TEP+1.0 Ce4+ 2.9374 -246.45 59.37 158.64 65.7
58.7 TEP+1.0 Ce4+ 2.7046 -256.94 67.90 162.36 68.5
表4  Cu电极在加有TEP和Ce4+复配缓蚀剂的0.5 mol/L盐酸溶液中浸泡1 h后的极化曲线电化学参数
[1] Zhang D Q, Cai Q R, He X M, et al. Inhibition effect of some amino acids on copper corrosion in HCl solution[J]. Mater. Chem. Phys., 2008, 112(2): 353-358
[2] Cai Q R, Gao L X, He X M, et al. Syneristic effect on corrosion inhibition by methionine for copper in hydrochloric acid solution[J]. Mater. Prot., 2007, 41(S6): 56-58
[2] (蔡奇瑞, 高立新, 何先明等. 盐酸溶液中蛋氨酸对铜的缓蚀协同作用[J]. 材料保护, 2007, 41(S6): 56-58)
[3] El-Shafei A A, Moussa M N H, El-Far A A. Inhibitory effect of amino acids on Al pitting corrosion in 0.1 M NaCl[J]. J. Appl. Electrochem., 1997, 27(9): 1075-1078
[4] Zhang D Q, Gao L X, Zhou G D. Inhibition of copper corrosion in aerated hydrochloric acid solution by amino-acid compounds[J]. J. Appl. Electrochem., 2005, 35(11): 1081-1085
[5] Guo W J, Chen S H, He W, et al. Study of triethyl phosphate self-assembled films on iron for corrosion inhibition[J]. J. Electrochem., 2008, 14(3): 340-342
[5] (郭文娟, 陈慎豪, 何畏等. 铁表面组装磷酸三乙酯缓蚀功能分子膜的研究[J]. 电化学, 2008, 14(3): 340-342)
[6] Ho D, Brack N, Scully J, et al. Cerium dibutylphosphate as a corrosion inhibitor for AA2024-T3 aluminum alloys[J]. J. Electrochem. Soc., 2006, 153(9): B392-B401
[7] Mu G N, Li X H, Qu Q, et al. Syneristic effect on corrosion inhibition by cerium (IV) ion and sodium molybdate for cold rolled steel in hydrochloric acid solution[J]. Acta. Chim. Sin., 2004, 62(24): 2386-2390
[7] (木冠南, 李向红, 屈庆等. 稀土铈(IV) 离子和钼酸钠在盐酸溶液中对冷轧钢的缓蚀协同效应[J]. 化学学报, 2004, 62(24): 2386-2390)
[8] Li X H, Deng S D, Fu H, et al. Synergistic inhibition effect of rare earth ions and vanillin on corrorion of cold rolled steel in H2SO4 solution[J]. Corros. Prot., 2009, 30(7): 480-483
[8] (李向红, 邓书端, 付惠等. 稀土离子和香兰素在H2SO4溶液中对冷轧钢的缓蚀协同效应[J]. 腐蚀与防护, 2009, 30(7): 480-483)
[9] Mu G N, Zhao T P. The synergistic effect of inhibiton corrosion of cerium ion and polyethlene glycol octylphenol ether (OP) for aluminum[J]. Mater. Prot., 1999, 32(10): 25-26
[9] (木冠南, 赵天培. 铈(IV) 离子和聚乙二醇辛基苯基醚 (OP) 对锌的缓蚀协同效应 [J].材料保护, 1999, 32(10): 25-26)
[10] Zhang D Q, Gao L X, Zhou G D. Inhibition of copper corrosion by bis-(1,1'-benzotriazoly)-α, ω-diamide compounds in aerated sulfuric acid solution[J]. Appl. Surf. Sci., 2006, 252(14): 4975-4981
[11] Ma H Y, Cheng X L, Li G Q, et al. The influence of hydrogen sulfide on corrosion of iron under different conditions[J]. Corros. Sci., 2000, 42(10): 1669-1683
[12] Sherif E M, Park S-M. Effects of 2-amino-5-ethylthio-1,3,4-thiadiazole on copper corrosion as a corrosion inhibitor in aerated acidic pickling solutions[J]. Electrochim. Acta., 2006, 51(28): 6556-6562
[13] Németh Z, Gáncs L, Gémes G, et al. pH dependence of phosphate sorption on aluminum[J]. Corros. Sci., 1998, 40(12): 2023-2027
[14] Tromans D, Silva J C. Anodic behavior of copper in iodide solutions: comparison with chloride and effect of benzotriazole-type inhibitors[J]. J. Electrochem. Soc., 1996, 143(2): 458-465
[15] Zhao Y, Lin C J, Li Y, et al. Electrochemical corrosion behavior of copper clad laminate in NaCl solution[J]. Acta. Phys.-Chim. Sin., 2007, 23(9): 1342-1346
[16] Sherif E M, Erasmus R M, Comins J D. Effects of 3-amino-1,2,4-triazole on the inhibition of copper corrosion in acidic chloride solutions[J]. J. Colloid. Interf. Sci., 2007, 311(1): 144-151
[17] Birbilis N, Buchheit R G, Ho D L, et al. Inhibition of AA2024-T3 on a phase-by-phase basis using an environmentally benign inhibitor, cerium dibutyl phosphate[J]. Electrochem. Solid. St., 2005, 8(11): C180-C183
[1] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] 卢爽, 任正博, 谢锦印, 刘琳. 2-氨基苯并噻唑与苯并三氮唑复配体系对Cu的缓蚀性能[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
[4] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[5] 邵明鲁, 刘德新, 朱彤宇, 廖碧朝. 乌洛托品季铵盐缓蚀剂的合成与复配研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[6] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[7] 李向红, 邓书端, 徐昕. 木薯淀粉三元接枝共聚物对钢在H2SO4溶液中的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 105-114.
[8] 郑艳欣, 刘颖, 宋青松, 郑峰, 贾玉川, 韩培德. 含铁铜基陶瓷复合材料高温氧化行为与耐磨性研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[9] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[10] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[11] 史显波,杨春光,严伟,徐大可,闫茂成,单以银,杨柯. 管线钢的微生物腐蚀[J]. 中国腐蚀与防护学报, 2019, 39(1): 9-17.
[12] 刘建国,高歌,徐亚洲,李自力,季菀然. 咪唑啉类衍生物缓蚀性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[13] 李亚琼,马景灵,王广欣,朱宇杰,宋永发,张景丽. NaPO3与SDBS缓蚀剂对AZ31镁合金空气电池在NaCl电解液中放电性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[14] 孔佩佩, 陈娜丽, 白德忠, 王跃毅, 卢勇, 冯辉霞. 壳聚糖及其衍生物的制备与缓蚀性能的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(5): 409-414.
[15] 马景灵, 通帅, 任凤章, 王广欣, 李亚琼, 文九巴. L-半胱氨酸/ZnO缓蚀剂对3102铝合金在碱性溶液中电化学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.