Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (3): 253-256    DOI: 10.11902/1005.4537.2013.111
  本期目录 | 过刊浏览 |
模拟压水堆一回路条件添加Pt技术研究
海正银(), 王辉, 曹林园, 胡勇
中国原子能科学研究院 北京 102413
Effect of Pt Deposit on Corrosion Behavior of 316LN in Simulated Primary Loop Water Environment of Pressurized Water Reactor
HAI Zhengyin(), WANG Hui, CAO Linyuan, HU Yong
China Institute of Atomic Energy, Beijing 102413, China
全文: PDF(1337 KB)   HTML
摘要: 

采用SEM,XPS,XRD和电感耦合等离子体原子发射光谱 (ICP-AES) 法并结合线性极化曲线研究了模拟压水堆一回路加氢水化学条件下预氧化的316LN不锈钢表面沉积贵金属Pt的方法及其对材料电化学行为的影响。结果表明,预氧化实验中,材料表面形成了双层氧化膜,外层为富Ni层,内层为富Cr层,与反应堆实际运行中材料表面产生的氧化膜结构和成分相似;在模拟热停堆实验条件下,用Na2Pt(OH)6配制含Pt量为0,10,50和100 μg·kg-1的溶液能够在316LN材料表面沉积达到目标要求的Pt。电化学实验结果表明,Pt沉积量越多,材料的腐蚀电流密度变化越小,腐蚀电位急剧降低,说明材料抗腐蚀性能提高。

关键词 压水堆一回路添加Pt加氢水化学316LN不锈钢腐蚀电位    
Abstract

A method of Pt deposition on a pre-oxidized 316LN steel surface was developed in an artificial environment, which aims to simulate hydrogenated water chemistry (HWC) condition of the primary loop of PWR and then its effect on the electrochemical behavior in the same environment of the structural material 316LN steel was studied by SEM, XPS, XRD, ICP-AES and linear dynamic polarization etc. At first, all the test steel samples were exposed in 320 ℃water with less than 100 μg·kg-1 oxygen for 400 h in order to form an oxide scale on the steel surface. Next, the pre-oxidized steel were immersed for 48 h at 150 ℃ to the water with addition of Na2Pt(OH)6 to deposit Pt (0, 10, 50 and 100 μg·kg-1, respectively) on the pre-oxidized steel. Finally, the samples were exposed to 300 ℃ high temperature water with <100 μg·kg-1 oxygen, 200 μg·kg-1 hydrogen while measuring the linear polarization curve of the treated steel. The result showed that a two layered oxide scale with the Ni-rich outer layer and Cr-rich inner layer were form on the steel, which is similar to the oxide scale formed during PWR service; the amount of the deposited Pt on the pre-oxidized steel was from 4.37 to 7.37 μg·cm-2 while the water containing Pt from 10 to 100 μg·kg-1. With the increase of the Pt concentration of the treated solutions, Ecorr decreased sharply while current density slightly changed, which revealed that the pre-oxidized steel samples with Pt deposit exhibit a better corrosion resistance.

Key wordsprimary loop of PWR    Pt deposit    hydrogen water chemistry    316LN stainless steel    corrosion potential
收稿日期: 2013-06-21     
ZTFLH:  TG174.1  
基金资助:国家高技术研究发展计划项目 (2012AA050901) 资助
作者简介: null

海正银,男,1985年生,博士生,研究方向为核电材料腐蚀防护及水化学

引用本文:

海正银, 王辉, 曹林园, 胡勇. 模拟压水堆一回路条件添加Pt技术研究[J]. 中国腐蚀与防护学报, 2014, 34(3): 253-256.
Zhengyin HAI, Hui WANG, Linyuan CAO, Yong HU. Effect of Pt Deposit on Corrosion Behavior of 316LN in Simulated Primary Loop Water Environment of Pressurized Water Reactor. Journal of Chinese Society for Corrosion and protection, 2014, 34(3): 253-256.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.111      或      https://www.jcscp.org/CN/Y2014/V34/I3/253

图1  
图2  
图3  
图4  
图5  
图6  
图7  
[1] Xu Y M. Status and Prospects of Nuclear Power Development in PRC [R]. Suzhou, 2005
[2] Hettiarachchi S. BWR SCC mitigation experiences with hydrogen water chemistry [A]. Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power System-Water Reactors [C]. Warrendale, 2005, 685-701
[3] Andresen P L, Morra M M. IGSCC of non-sensitized stainless steels in high temperature water[J]. J. Nucl. Mater., 2008, 383: 97-111
[4] Odell A D, Scholz R J. Benefits, impacts and effects on a commercial nuclear power plant due to noble metal chemical addition [A]. Water Chemistry of Nuclear Reactor Systems 8 [C]. San Jose, 2000, 122-126
[5] Hettiarachchi S, Cowan R L, Diaz T P, et al. Noble metal chemistry additiona .. from development to commercial application [A]. 7th International Conference on Nuclear Engineering [C]. Tokyo, 1999, 1-13
[6] Hettiarachchi S, Cowan R L, Diaz T P. NobleChem technology for life extension of BWRs-Field experiences [A]. Water Chemistry of Nuclear Reactor Systems 8 [C]. San Jose, 2000, 116-120
[7] Stellwag B, Staudt U. Water chemistry practice at German BWR plants [A]. Proceedings of the International Conference on Water Chemistry of Nuclear Reactor System [C].emistry of Nuclear Reactor System [C]. San Francis, 2004, 826-867
[8] Kim Y J. Effect of water chemistry on corrosion behavior of 304SS in 288 ℃ water [A]. Proceedings of the International Conference on Water Chemistry of Nuclear Reactor System [C]. San Francis, 2004, 545-551
[9] Digby D. Macdonald stress corrosion cracking in reactor coolant circuits-an electrochmist's viewpoint [A]. Proceedings of the International Conference on Water Chemistry of Nuclear Reactor System [C]. San Francis, 2004, 745-765
[10] Cowan R L. Modern BWR chemistry operating strategies [A]. Proceedings of the International Conference on Water Chemistry of Nuclear Reactor System [C]. San Francis, 2004, 170-182
[11] Cowan R, Hussey P. Radiation field trends as related to chemistry in united states BWRs [A]. Proceedings of the International Conference on Water Chemistry of Nuclear Reactor System [C]. Jeju Island, 2006, 1-6
[1] 丁国清,李向阳,张波,杨朝晖,黄桂桥,杨海洋,刘凯吉. 金属材料在天然海水中的腐蚀电位及其变化规律[J]. 中国腐蚀与防护学报, 2019, 39(6): 543-549.
[2] 刘圆圆,王伟,王燕华,王佳. NaCl液滴下304不锈钢表面电化学性质研究[J]. 中国腐蚀与防护学报, 2012, 32(1): 28-33.
[3] 刘彬,段继周,侯保荣. 天然海水中微生物膜对316L不锈钢腐蚀行为研究[J]. 中国腐蚀与防护学报, 2012, 32(1): 48-53.
[4] 冯兴国 唐聿明 赵旭辉 左禹. 混凝土结构中钢筋腐蚀电位与腐蚀电流在液面附近的分布[J]. 中国腐蚀与防护学报, 2009, 29(6): 459-464.
[5] 丁宝峰; 尉丹; 吴荫顺; 曹备; 张峥嵘 . 304不锈钢SSRT过程中电位信号奇异性的小波分析[J]. 中国腐蚀与防护学报, 2004, 24(2): 71-74 .
[6] 钟庆东; 谢巧敏; 周国定 . 防锈油膜腐蚀电位分布的不均匀性[J]. 中国腐蚀与防护学报, 2001, 21(4): 206-209 .
[7] 吕战鹏; 黄德伦; 杨武 . 含重铬酸根硫酸溶液中磁场对铁自腐蚀状态及极化电阻的影响[J]. 中国腐蚀与防护学报, 2000, 20(4): 230-236 .
[8] 黄桂桥; 金贤威; 侯文泰 . 不锈钢在海水中的耐蚀性与腐蚀电位的关系[J]. 中国腐蚀与防护学报, 2000, 20(1): 35-40 .
[9] 谢伟杰x; 李获; 胡艳玲 . 用自腐蚀电位预测LY12CZ铝合金的腐蚀损伤[J]. 中国腐蚀与防护学报, 1999, 19(2): 95-99 .
[10] 林昌健;卓向东;陈纪东;王辉. 阵列电极法测量聚合物/金属界面电位分布[J]. 中国腐蚀与防护学报, 1997, 17(1): 7-11.