Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (2): 138-146    DOI: 10.11902/1005.4537.2013.099
  研究报告 本期目录 | 过刊浏览 |
基于Hilbert-Huang变换的电化学噪声解析及其应用
石维, 董泽华, 郭兴蓬
华中科技大学化学与化工学院 武汉 430074
Analysis of Electrochemical Noise by Hilbert-Huang Transform and Its Application
SHI Wei, DONG Zehua, GUO Xingpeng
School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
全文: PDF(3495 KB)   HTML
摘要: 

借助Hilbert-Huang变换 (HHT) 研究了Q345B碳钢在模拟混凝土孔隙液中的电化学噪声信号的时频谱,发现相比离散小波变换 (discretewavelet transform,DWT),HHT在噪声信号识别过程中具有更高的时频分辨率和稳定性,能够从本质上提高对电化学噪声中耦合的亚稳态点蚀信号的解析精度。针对Q345B碳钢处于钝化态、亚稳态点蚀萌发和稳态点蚀生长等不同阶段的噪声特点,提出了一套基于HHT边界谱的腐蚀状态量化指数与腐蚀特征识别方法。借助于在线电化学噪声监测装置,HHT算法将可用于诊断工业环境的腐蚀形态和腐蚀发展趋势。

关键词 电化学噪声点蚀Hilbert-Huang变换小波变换    
Abstract:Time-frequency transition plays a key role in the pattern identification of electrochemical noise (EN) signal. In this paper, we studied the EN of carbon steel in simulated concrete pore solution by Hilbert-Huang transform (HHT), and found that, in comparison with discrete wavelet transform (DWT), HHT exhibited much higher resolution and stability at time-frequency domain for the identification of EN transients. Moreover, HHT can improve the resolving accuracy of metastable pit signals coupled in EN. According to the EN characteristics of carbon steel at different corrosion status, such as passive, metastable, and stably growing pits, we proposed a pitting factor (PF) as an index for identification and quantification of localized corrosion type based on HHT algorithm, aiming at the diagnosis of corrosion type and severity of industrial installation by online EN monitoring instrument.
Key wordselectrochemical noise    pitting corrosion    Hilbert-Huang transform    wavelet transform
收稿日期: 2013-05-15     
ZTFLH:  O646  
基金资助:国家自然科学基金项目(50971064) 资助
通讯作者: 董泽华,E-mail:zehua.dong@gmail.com   
作者简介: 石维,男,1986年生,博士生,研究方向为金属腐蚀与防护

引用本文:

石维, 董泽华, 郭兴蓬. 基于Hilbert-Huang变换的电化学噪声解析及其应用[J]. 中国腐蚀与防护学报, 2014, 34(2): 138-146.
SHI Wei, DONG Zehua, GUO Xingpeng. Analysis of Electrochemical Noise by Hilbert-Huang Transform and Its Application. Journal of Chinese Society for Corrosion and protection, 2014, 34(2): 138-146.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.099      或      https://www.jcscp.org/CN/Y2014/V34/I2/138

[1] Yang L, Shen H R. Research and comparison on the application of Hilbert-Huang transform and wavelet transform to fault feature extraction [J]. Acta Armamentarii, 2009, 30(5): 628-632
(杨露, 沈怀荣. 希尔伯特-黄变换与小波变换在故障特征提取中的对比研究 [J]. 兵工学报, 2009, 30(5): 628-632)
[2] Zhang M, Cheng J X, Fan F H, et al. Study on the problems in extracting instantaneous characters of signals based on Hilbert transform [J]. Telecommun. Eng., 2003, 43(4): 44-48
(张旻, 程家兴, 樊甫华等. 利用Hilbert变换提取信号瞬时特征参数的问题研究 [J]. 电讯技术, 2003, 43(4): 44-48)
[3] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proc. R. Soc. Lond., 1998, 454A: 903-995
[4] Hou B, Gui Z X, Hu M, et al. Time-frequency spectral analysis of seismic data based on Hilbert-Huang transform [J]. Prog. Explor. Geophys., 2009, 32(4): 248-251
(侯斌, 桂志先, 胡敏等. 基于希尔伯特-黄变换的地震信号时频谱分析 [J]. 勘探地球物理进展, 2009, 32(4): 248-251)
[5] Wan X, Zou J Z, Liu L, et al. The study of runoff forecast by wavelet and Hilbert-Huang [J]. J. Huazhong Univ. Sci. Technol. (Nat. Sci.), 2008, 36(1): 107-111
(万星, 周建中, 刘力等. 基于希尔伯特-黄变换与小波方法的径流序列分析 [J]. 华中科技大学学报 (自然科学版), 2008, 36(1): 107-111)
[6] Zhang J Q, Zhang Z, Wang J M, et al. Analysis and application of electrochemical noise II. application of electrochemical noise [J]. J. Chin. Soc. Corros. Prot., 2002, 22(4): 50-57
(张鉴清, 张昭, 王建明等. 电化学噪声的分析与应用II. 电化学噪声的应用 [J]. 中国腐蚀与防护学报, 2002, 22(4): 50-57)
[7] Zhang J Q, Zhang Z, Wang J M, et al. Analysis and application of electrochemical noise I. theory of electrochemical noise analysis [J]. J. Chin. Soc. Corros. Prot., 2001, 21(5): 55-65
(张鉴清, 张昭, 王建明等. 电化学噪声的分析与应用I. 电化学噪声的分析原理 [J]. 中国腐蚀与防护学报, 2001, 21(5): 55-65)
[8] Hernandez M, Genesca J, Uruchurtu J, et al. Correlation between electrochemical impedance and noise measurements of waterborne coatings [J]. Corros. Sci., 2009, 51(3): 499-510
[9] Dong Z H, Shi W, Guo X P. Initiation and repassivation of pitting corrosion of carbon steel in carbonated concrete pore solution [J]. Corros. Sci., 2011, 53(4): 1322-1330
[10] Dong Z H, Guo X P, Zheng J X, et al. Investigation on inhibition of CrO42- and MoO42- ions on carbon steel pitting corrosion by electrochemical noise analysis [J]. J. Appl. Electrochem., 2002, 32(4): 395-400
[11] Dong Z H, Shi W, Zhang G A, et al. The role of inhibitors on the repassivation of pitting corrosion of carbon steel in synthetic carbonated concrete pore solution [J]. Electrochim. Acta, 2011, 56(17): 5890-5897
[12] Jiang P. Study on wavelet application in signal denoise and data compression [D]. Zhejiang University, 2004
(蒋鹏. 小波理论在信号去噪和数据压缩中的应用研究 [D]. 浙江大学, 2004)
[13] Homborg A, Tinga T, Zhang X, et al. Time-frequency methods for trend removal in electrochemical noise data [J]. Electrochim. Acta, 2012, 70: 199-209
[14] Dong Z, Guo X, Zheng J, et al. Calculation of noise resistance by use of the discrete wavelets transform [J]. Electrochem. Commun., 2001, 3(10): 561-565
[15] Shahidi M, Farrehi Moghaddam R, Gholamhosseinzadeh M R, et al. Investigation of the cathodic process influence on the electrochemical noise signals arising from pitting corrosion of Al alloys using wavelet analysis [J]. J. Electroanal. Chem., 2013, 693: 114-121
[16] Yang Y, Zhang T, Shao Y, et al. In-situ study of dew point corrosion by electrochemical measurement [J]. Corros. Sci., 2013, 71: 62-71
[17] Muniandy S V, Chew W X, Kan C S. Multifractal modelling of electrochemical noise in corrosion of carbon steel [J]. Corros. Sci., 2011, 53(1): 188-200
[18] Homborg A M, van Westing E P M, Tinga T, et al. Novel time-frequency characterization of electrochemical noise data in corrosion studies using Hilbert spectra [J]. Corros. Sci., 2013, 66: 97-110
[19] Shahidia M, Hosseini S M A, Jafari A H. Comparison between ED and SDPS plots as the results of wavelet transform for analyzing electrochemical noise data [J]. Electrochim. Acta, 2011, 56: 9986-9997
[20] Li J, Zhao L, Li B W, et al. Electrochemical noise analysis of 304 stainless steel pitting corrosion in ferrice chloride solution [J]. J. Chin. Soc. Corros. Prot., 2012, 32(3): 235-240
(李季, 赵林, 李博文等. 304不锈钢点蚀的电化学噪声特征 [J]. 中国腐蚀与防护学报, 2012, 32(3): 235-240)
[21] Zhong Y M, Qin S R, Tang B P. Study on the marginal spectrum in Hilbert-Huang transform [J]. Syst. Eng. Electron., 2004, 26(9): 1323-1326
(钟佑明, 秦树人, 汤宝平. 希尔伯特黄变换中边际谱的研究 [J]. 系统工程与电子技术, 2004, 26(9): 1323-1326)
[1] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[3] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[4] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[5] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[6] 贺三, 孙银娟, 张志浩, 成杰, 邱云鹏, 高超洋. 20#钢在含饱和CO2的离子液体醇胺溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[7] 李清, 张德平, 王薇, 吴伟, 卢琳, 艾池. L80油管钢实际腐蚀状况评估及室内电化学和应力腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[8] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[9] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[10] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[11] 苏小红,胡会娥,孔小东. W颗粒/Zr41.2Ti13.8Cu12.5Ni10Be22.5基非晶复合材料在3%NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[12] 王标,杜楠,张浩,王帅星,赵晴. 304不锈钢点蚀产物对亚稳态点蚀萌生和稳态蚀孔生长的加速作用[J]. 中国腐蚀与防护学报, 2019, 39(4): 338-344.
[13] 李雨,关蕾,王冠,张波,柯伟. 机械应力对不锈钢点蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.
[14] 张思齐,杜楠,王梅丰,王帅星,赵晴. 阴极面积对3.5%NaCl溶液中304不锈钢稳态点蚀生长速率的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 551-557.
[15] 黄博博,刘平,刘新宽,梅品修,陈小红. 新型HSn70-1铜网衣两年期海水腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.