Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (2): 153-159    DOI: 10.11902/1005.4537.2013.091
  研究报告 本期目录 | 过刊浏览 |
铝合金牺牲阳极极化性能研究
梁虎1, 杜敏1, 张有慧2
1. 中国海洋大学化学化工学院 海洋化学理论与工程技术教育部重点实验室 青岛 266100;
2. 海洋石油工程 (青岛) 有限公司 青岛 266520
Polarization Performance of Two Aluminium AlloySacrificial Anodes
LIANG Hu1, DU Min1, ZHANG Youhui2
1. Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China;
2. Offshore Oil Engineering (Qingdao) Co., Ltd., Qingdao 266520, China
全文: PDF(1499 KB)   HTML
摘要: 

阳极开路电位下由于氧化膜的存在导致阳极不易溶解,当对阳极施加外加电流后,双电层电容逐渐增大,极化电阻逐渐减小,氧化膜逐渐破裂;随着极化电位的增大,阳极发出电流迅速增大,此时极化电阻逐渐减小,最后基本稳定不变;极化电阻较小的阳极材料有着较好的电化学性能,这与4 d加速实验的评价结果相吻合。

关键词 开路电位恒电流极化循环伏安电化学阻抗极化性能    
Abstract:The polarization performance of two kinds of Al-Zn-In-Mg-Ti sacrificial anodes at different potential was studied by open circuit potential, constant current test, cyclic voltammetry and electrochemical impedance spectroscopy. The results showed that the anodes were difficult to dissolve because of an oxide scale could form at open circuit potential. After an impressed current was applied to the anodes, the electric double layer capacitance gradually increased, the polarization resistance was gradually reduced, the oxide film gradually ruptured. With the increasing of polarization potential, the anode current increased rapidly, while the polarization resistance decreased and finally became stable. The anode with smaller polarization resistance exhibited a good electrochemical performance, which was consistent with the 4 d evaluation results by an accelerated test.
Key wordsopen circuit potential    constant current test    cyclic voltammetry    electrochemical impedance spectroscopy    polarization performance
收稿日期: 2013-05-06     
ZTFLH:  TG174.2  
通讯作者: 杜敏,E-mail:ssdm99@ouc.edu.cn   
作者简介: 梁虎,1986年生,男,硕士生,研究方向为金属腐蚀与防护

引用本文:

梁虎, 杜敏, 张有慧. 铝合金牺牲阳极极化性能研究[J]. 中国腐蚀与防护学报, 2014, 34(2): 153-159.
LIANG Hu, DU Min, ZHANG Youhui. Polarization Performance of Two Aluminium AlloySacrificial Anodes. Journal of Chinese Society for Corrosion and protection, 2014, 34(2): 153-159.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.091      或      https://www.jcscp.org/CN/Y2014/V34/I2/153

[1] Reding J T, Newport J J. The influence of alloying elements on aluminum anodes in sea water [J]. Mater. Prot., 1966, 5(11): 15-18
[2] Sakano T, Toda K, Hanada M. Test on the effect of indium for high performance aluminum anodes [J]. Mater. Prot., 1966, 5(11): 45-50
[3] GB/T17848-1999. Test Methods for Electrochemical Properties of Sacrificial Anodes [S]. Beijing: China Standard Press, 2002
[4] Pu Z Q. Study method of aluminum alloy sacrificial anode [J]. Build. Mater. Decoration, 2006, 2(2): 207
(蒲志强. 铝合金牺牲阳极的研究方法 [J]. 建材与装饰, 2006, 2(2): 207)
[5] Ma J L, Wen J B, Li G X, Xv C H. The corrosion behavior of Al-Zn-In-Mg-Ti alloy in NaCl solution [J]. Corros. Sci., 2010, 52: 534-539
[6] Ma J L, Wen J B. The effects of lanthanum on microstructure and electrochemical properties of Al-Zn-In based sacrificial anode alloys [J]. Corros. Sci., 2009, 51: 2115-2119
[7] Zhao R, Du M, Wang C. The electrochemical behavior of Al-Mg-Ga-Sn sacrificial anode materials [J]. Periodical Ocean Univ. China, 2012, 42(suppl.): 378-383
(赵锐, 杜敏, 王超. Al-Mg-Ga-Sn牺牲阳极材料的电化学行为研究 [J]. 中国海洋大学学报, 2012, 42(增刊): 378-383)
[8] Gong Y Q. College Physics Tutorial [M]. Beijing: National Defense Industry Press, 2011
(龚勇清. 大学物理教程 [M]. 北京: 国防工业出版社, 2011)
[9] He J G, Wen J B, Li X D, et al. Electrochemical impedance spectra of Al-Zn-Sn-Ga anode during corrosion process [J]. Chin. J. Nonferrous Met., 2012, 22(1): 189-190
(贺俊光, 文九巴, 李旭东等. AI-Zn-Sn-Ga阳极腐蚀过程的电化学阻抗谱 [J]. 中国有色金属学报, 2012, 22(1): 189-190)
[10] Cao C N, Wang J, Lin H C. Effect of Cl- ion on the impedance of passive-film-covered electrodes [J]. J. Chin. Soc. Corros. Prot., 1989, 9(4): 261-270
(曹楚南, 王佳, 林海潮. 氯离子对钝态金属电极阻抗谱的影响 [J]. 中国腐蚀与防护学报, 1989, 9(4): 261-270)
[11] Wang Q Z, Du M. Marine Corrosion and Protection Technology [M]. Qingdao: Qingdao Marine University Press, 2001: 308-309
(王庆璋, 杜敏. 海洋腐蚀与防护技术 [M]. 青岛: 青岛海洋大学出版社, 2001: 308-309)
[12] Pu Z Q. Study on aluminum sacrificial anode in high-temperature seawater and sea mud [D]. Guangzhou: South China University of Technology, 1993
(浦志强. 用于高温海水及海泥中铝合金牺牲阳极的研究 [D]. 广州: 华南理工大学, 1993)
[13] Reding J T, Newport J J. The influence of alloying elements on aluminum anodes in sea water [J]. Mater. Prot., 1966, 5(12): 15-18
[14] Zhu C D, Li Y. Develop of new and efficient sacrificial anode for different temperature seawater and sea mud [J]. China Offshore Oil Gas(Eng.) 1999, 11 (1): 28-32
(朱承德, 李异. 用于不同温度的海水,海泥中新型高效牺牲阳极的研制 [J]. 中国海上油气 (工程), 1999, 11(1): 28-32)
[15] Li Y, Li J S, Deng H P. Research on failure sacrificial anode used on seabed mud oil delivery pipeline in south China sea oil field [J]. J. South China Univ. Technol. (Nat. Sci.), 2001, 29(7): 24-27
(李异, 李建三,邓和平. 南海油田海底输油管线失效牺牲阳极的研究 [J]. 华南理工大学学报 (自然科学版), 2001, 29(7): 24-27)
[16] Li Y, Li Y G, Li J S. Comparative study of aluminum alloys sacrificial anode for oil-carrying pipelines in sea bed mud [J]. Corros. Sci. Prot. Technol., 2001, 13(6): 351-354
(李异, 李永广, 李建三. 海底输油管线牺牲阳极用Al合金的选材研究 [J]. 腐蚀科学与防护技术, 2001, 13(6): 351-354)
[17] Li Y, Li Y G. The analysis for failure Al sacrificial anode used in sea bed pipelines [J]. J. Chin. Soc. Corros. Prot., 2002, 22(1): 60-63
(李异, 李永广. 在役海底管线牺牲阳性失效分析 [J]. 中国腐蚀与防护学报, 2002, 22(1): 60-63)
[1] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[2] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[3] 孙硕, 杨杰, 钱薪竹, 常人丽. Ni-Cr-P化学镀层的制备与电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[4] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[5] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[6] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[7] 刘丽,于思荣. 添加Gd对AM60镁合金耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 185-191.
[8] 蓝秀玲,刘光明,周街胜,刘志雷,彭叔森,李茂东. 有机硅/SiO2杂化溶胶改性丙烯酸树脂及性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[9] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[10] 邓三喜, 闫小宇, 柴柯, 吴进怡, 史洪微. 假单胞菌对聚硅氧烷树脂清漆涂层分解及防腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[11] 姚望, 周和荣, 肖葵, 刘鹏洋, 但佳永, 吴润. 中性盐雾环境中DC06超深冲钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(3): 241-247.
[12] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[13] 桂琪, 郑大江, 宋光铃. 醇酸清漆保护性的电化学加速评价[J]. 中国腐蚀与防护学报, 2018, 38(3): 274-282.
[14] 张杰, 胡秀华, 郑传波, 段继周, 侯保荣. 海洋微藻环境中钙质层对Q235碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[15] 崔晓飞, 谭晓明, 王德, 钱昂. 铝合金表面聚氨酯涂层在加速实验条件下的老化机制及规律研究[J]. 中国腐蚀与防护学报, 2018, 38(1): 74-80.