Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (3): 237-242    DOI: 10.11902/1005.4537.2013.088
  本期目录 | 过刊浏览 |
X100管线钢焊接接头抗HIC性能研究
王斌1(), 周翠1, 李良君2, 胡红梅1, 朱加祥1
1. 西南石油大学 材料科学与工程学院 成都 610500
2. 四川科宏石油天然气工程有限公司 成都 610000
Resistance to Hydrogen Induced Corrosion Cracking of Weld Joint of X100 Pipeline Steel
WANG Bin1(), ZHOU Cui1, LI Liangjun2, HU Hongmei1, ZHU Jiaxiang1
1. School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500, China
2. Sichuan Kehong Oil and Gas Engineering CO., LTD., Chengdu 61000, China
全文: PDF(5396 KB)   HTML
摘要: 

利用OM和SEM研究了X100管线钢焊接接头的微观组织,并利用EDS分析接头中的非金属夹杂物种类及成分。结果表明,实验用X100管线钢焊接接头由针状铁素体、粒状贝氏体和M/A岛组成;焊缝金属中含有MnS,Si的氧化物和Al的氧化物及Al-Mg-O和Ca-Al-O-S系夹杂物。焊接接头氢致开裂敏感性较高,焊缝金属中的非金属夹杂物及硬脆M/A组元与基体之间的界面和应力导致氢致裂纹的萌生,并沿粗大的贝氏体晶粒扩展。

关键词 X100管线钢氢致开裂非金属夹杂物M/A组元    
Abstract

The resistance to hydrogen induced corrosion cracking (HIC) of the weld joint of X100 pipeline steel prepared by gas shielding metal arc welding was studied. OM and SEM with EDS were adopted to characterize the microstructure of the X100 weld joint and the non-metallic inclusions. The experimental results presented that the X100 weld joint exhibited a microstructure consisted of acicular ferrite, bainite and M/A islets, MnS, Al-oxide, Si-oxide and Al-Mg-O, Ca-Al-O-S mixed inclusions were also found in the weld joint. The weld joint had a high susceptibility to HIC due to the large amounts of non-metallic inclusions, furthermore, the interfaces and stress between the matrix and brittle M/A islets as well as inclusions might play an important role in the initiation of HIC cracks and then the cracks propagated along the grain boundaries of the coarse bainite.

Key wordsX100 pipeline steel    HIC    Non-metallic inclusion    M/A constituent
收稿日期: 2013-06-03     
ZTFLH:  TG171  
基金资助:四川省教育厅成果转化重大培育项目(13CZ0026) 资助
作者简介: null

王斌,男,1965年生,博士,副教授,研究方向为金属材料的焊接与腐蚀

引用本文:

王斌, 周翠, 李良君, 胡红梅, 朱加祥. X100管线钢焊接接头抗HIC性能研究[J]. 中国腐蚀与防护学报, 2014, 34(3): 237-242.
Bin WANG, Cui ZHOU, Liangjun LI, Hongmei HU, Jiaxiang ZHU. Resistance to Hydrogen Induced Corrosion Cracking of Weld Joint of X100 Pipeline Steel. Journal of Chinese Society for Corrosion and protection, 2014, 34(3): 237-242.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.088      或      https://www.jcscp.org/CN/Y2014/V34/I3/237

Weld bead Welding
material
Welding
current / A
Welding
voltage / V
Wire feed
speed / inmin-1
Gas flow
Lmin-1
Root welding ACR-110K3M 110~125 15~17 157 15~20
Filling welding 1 ACR-120GM 102~125 20~22 176~204 15~20
Filling welding 2 ACR-120GM 96~123 20~22 165~196 15~20
Filling welding 3 ACR-120GM 110~120 19.5~22 193~196 15~20
Cover welding ACR-120GM 105~116 20~22.5 186~191 20~25
  
图1  
Sample CSR / % CLR / % CTR / %
1 2.38 21.00 21.84
2 6.37 37.13 45.50
3 4.91 31.99 19.68
Average 4.55 30.04 29.01
  
图2  
图3  
图4  
图5  
图6  
Grade Sulfide
A
Aluminium
oxide B
Silicate
C
Spherical
oxide D
Single spherical
particls DS
Total grade Fine type 0.5 9.5 0.5 47 7.5
Coarse type 1.5 18.5 0.5 1
Maximum grade 0.5 3s 1 2 3
  
图7  
[1] Hardie D, Charles E A, Lopez A H. Hydrogen embrittlement of high strength pipeline steels[J]. Corros. Sci., 2006, 48(12): 4378-4385
[2] Carneiro R A, Ratnapuli R C, de Freitas Cunha Lins V. The influence of chemical composition and microstructure of API linepipe steels on hydrogen induced cracking and sulfide stress corrosion cracking[J]. Mater. Sci. Eng., 2003, A357(1): 104-110
[3] Dong C F, Liu Z Y, Li X G, et al. Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen-induced cracking[J]. Int. J. Hydrogen Energy, 2009, 34(24): 9879-9884
[4] Kim W K, Koh S U, Yang B Y, et al. Effect of environmental and metallurgical factors on hydrogen induced cracking of HSLA steels[J]. Corros. Sci., 2008, 50(12): 3336-3342
[5] Park G T, Koh S U, Jung H G, et al. Effect of microstructure on the hydrogen trapping efficiency and hydrogen induced cracking of linepipe steel[J]. Corros. Sci., 2008, 50(7): 1865-1871
[6] Al-Mansour M, Alfantazi A M, El-boujdaini M. Sulfide stress cracking resistance of API-X100 high strength low alloy steel[J]. Mater. Des., 2009, 30(10): 4088-4094
[7] Beidokhti B, Dolati A, Koukabi A H. Effects of alloying elements and microstructure on the susceptibility of the welded HSLA steel to hydrogen-induced cracking and sulfide stress cracking[J]. Mater. Sci. Eng., 2009, A507(1): 167-173
[8] AI-Mansour M, Alfantazi A M, EI-boujdaini M. Sulfide stress cracking resistance of API X100 high strength low alloy steel[J]. Mater. Des., 2009, 30(10): 4088-4094
[9] Qi L H, Niu J, Yang L, et al. Effect of strain aging on microstructure and properties of X100 pipeline steel[J]. Trans. Mater. Heat. Treat., 2011, 32(2): 66-68
[9] (齐丽华, 牛靖, 杨龙等. X100级高强度管线钢应变时效行为[J]. 材料热处理学报, 2011, 32(2): 66-68)
[10] CanadianStandards Association. CSA Z662-07, Oil and Gas Pipeline Systems[S]. 2007
[11] Veritas D N. Rules for Submarine Pipeline Systems 1981 [M]. Oslo: Det Norske Veritas, 1982
[12] Beidokhti B, Dolati A, Koukabi A H. Effects of alloying elements and microstructure on the susceptibility of the welded HSLA steel to hydrogen-induced cracking and sulfide stress cracking[J]. Mater. Sci. Eng., 2009, A507(1): 167-173
[13] Zhou Q, Ji G S, Zhang J B, et al. The effect of sulfides on hydrogen induced cracking of pipeline steels[J]. J. Mater. Eng., 2002, 9: 38-39
[13] (周琦, 季根顺, 张建斌等. 管线钢中的硫化夹杂物与氢致开裂[J]. 材料工程, 2002, 9: 38-39)
[14] Payandeh Y, Soltanieh M. Oxide inclusions at different steps of steel production[J]. J. Iron. Steel Res. Int., 2007, 14(5): 39-46
[15] Dong C F, Li X G, Liu Z Y, et al. Hydrogen-induced cracking and healing behavior of X70 steel[J]. J. Alloys Compd., 2009, 484(1): 966-972
[16] Zhen F, Liu J, Huang F, et al. Effect of the nonmetallic inclusions on the HIC behavior of X120 pipeline steel[J]. J. Chin. Soc. Corros. Prot., 2010, 30(2): 147-148
[16] (镇凡, 刘静, 黄峰等. 夹杂物对X120管线钢氢致开裂的影响[J].中国腐蚀与防护学报, 2010, 30(2): 147-148)
[1] 王新华, 杨永, 陈迎春, 位凯玲. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[2] 袁玮,黄峰,甘丽君,戈方宇,刘静. 显微组织对X100管线钢氢致开裂及氢捕获行为影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 536-542.
[3] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[4] 郭强, 陈长风, 李世瀚, 于浩波, 李鹤林. 冷焊修复层在H2S环境下的开裂行为研究[J]. 中国腐蚀与防护学报, 2018, 38(2): 167-173.
[5] 罗金恒,胥聪敏,杨东平. SRB作用下X100管线钢在酸性土壤环境中的应力腐蚀开裂行为[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.
[6] 赵阳, 梁平, 史艳华, 张云霞. 环境因素对X100钢表面钝化膜性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(2): 113-121.
[7] 史显波, 王威, 严伟, 单以银, 杨柯. M/A组元对高强度管线钢抗H2S性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(2): 129-136.
[8] 张秀云, 石志强, 王彦芳, 刘明星, 杨升升. X100管线钢在盐渍土壤模拟溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2015, 35(1): 33-37.
[9] 赵阳, 梁平, 史艳华, 王秉新, 刘峰, 武占文. NaHCO3溶液中X100和X80管线钢钝化膜性能比较[J]. 中国腐蚀与防护学报, 2013, 33(6): 455-462.
[10] 董希青,黄彦良. 不锈钢在海洋环境中的环境敏感断裂研究进展[J]. 中国腐蚀与防护学报, 2012, 32(3): 189-194.
[11] 姚学军,王俭秋,左景辉,韩恩厚,柯伟. 微观组织对X52钢抗H2S腐蚀和开裂性能的影响[J]. 中国腐蚀与防护学报, 2012, 32(2): 95-101.
[12] 李超, 杜翠薇, 刘智勇,李晓刚. X100管线钢在水饱和酸性土壤中的电化学阻抗谱特征[J]. 中国腐蚀与防护学报, 2011, 31(5): 377-380.
[13] 饶思贤,万章,宋光雄,张铮,钟群鹏. 基于规则的晶间腐蚀和氢致开裂的失效模式诊断[J]. 中国腐蚀与防护学报, 2011, 31(4): 260-264.
[14] 郏义征,王俭秋,韩恩厚,柯伟. X100管线钢在恒载荷作用下的应力腐蚀开裂[J]. 中国腐蚀与防护学报, 2011, 31(3): 184-189.
[15] 镇凡;刘静;黄峰;程吉浩;李翠玲;郭斌;徐进桥. 夹杂物对X120管线钢氢致开裂的影响[J]. 中国腐蚀与防护学报, 2010, 30(2): 145-149.