Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (2): 119-124    DOI: 10.11902/1005.4537.2013.085
  研究报告 本期目录 | 过刊浏览 |
铁素体-马氏体P92钢在600 ℃/25 MPa超临界水中的氧化特性
徐鸿, 袁军, 朱忠亮, 张乾, 张乃强
华北电力大学 电站设备状态监测与控制教育部重点实验室 北京 102206
Oxidation Behavior of Ferritic-martensitic Steel P92 Exposed to Supercritical Water at 600 ℃/25 MPa
XU Hong, YUAN Jun, ZHU Zhongliang, ZHANG Qian, ZHANG Naiqiang
Key Laboratory of Condition Monitoring and Control for Power Plant Equipment of Ministry of Education, North China Electric Power University, Beijing 102206, China
全文: PDF(2656 KB)   HTML
摘要: 

针对超超临界机组典型用钢铁素体/马氏体P92钢在600 ℃,25 MPa,溶解氧浓度分别为0,100和300 μg/L的超临界水环境中进行了氧化实验研究。结果表明:氧化层为典型的双层结构,外层为富Fe的Fe3O4,内层为富Cr的Fe-Cr尖晶石氧化物;不同于550 ℃超临界水环境的氧化结果,氧化膜在氧化初期就产生了裂纹;溶解氧浓度为300 μg/L条件下的氧化试样,内层氧化物与基体之间产生明显的裂缝。并讨论了溶解氧对氧化增重和裂缝形成的影响。

关键词 P92钢氧化超临界水溶解氧    
Abstract:The oxidation behavior of ferritic-martensitic P92 steel was studied in supercritical waters containing different dissolved oxygen of 0, 100 and 300 μg/L at 600 ℃ under 25 MPa. The results show that a typical double-layered oxide scale is formed on all the samples, which consists an outer layer Fe-rich magnetite and an inner layer Cr-rich Fe-Cr spinel. Cracks on the surface of oxide scales are found at the initial oxidation stage, which is different from the experimental phenomenon in supercritical water at 550 ℃. A distinct gap between inner oxide layer and substrate alloy is observed in some regions of the sample which is exposed to the supercritical water containing 300 μg/L dissolved oxygen. The mechanism concerning the influence of dissolved oxygen on oxidation behavior and the gap formation is further discussed.
Key wordsP92 steel    oxidation    supercritical water    dissolved oxygen
收稿日期: 2013-06-07     
ZTFLH:  TK224  
基金资助:国家自然科学基金重点项目 (51134016),国家自然科学基金青年基金项目 (51201064) 和中央高校基本科研业务费专项资金项目资助
通讯作者: 张乃强,E-mail:naiqiang@mit.edu   
作者简介: 徐鸿,男,1959年生,教授、博士,研究方向为电站设备状态评估与寿命管理、高温部件损伤表征与检测技术、火电厂节能

引用本文:

徐鸿, 袁军, 朱忠亮, 张乾, 张乃强. 铁素体-马氏体P92钢在600 ℃/25 MPa超临界水中的氧化特性[J]. 中国腐蚀与防护学报, 2014, 34(2): 119-124.
XU Hong, YUAN Jun, ZHU Zhongliang, ZHANG Qian, ZHANG Naiqiang. Oxidation Behavior of Ferritic-martensitic Steel P92 Exposed to Supercritical Water at 600 ℃/25 MPa. Journal of Chinese Society for Corrosion and protection, 2014, 34(2): 119-124.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.085      或      https://www.jcscp.org/CN/Y2014/V34/I2/119

[1] Archer C L, Jacobsen M Z. A technology roadmap for Generation IV nuclear energy systems [A]. U.S. DOE Nuclear Energy Research Advisory Committee and the Generation IV Internationa1 Forum [C]. Washington: 2002, 69-70
[2] Shaw R W, Brill T B, Clifford A A, et al. Supercritical water: Amedium for chemistry [J]. Chem. Eng. News, 1991, 69: 26-39
[3] Kritzer P. Corrosion in high-temperature and supercritical water and aqueous solutions: a review [J]. J. Supercrit. Fluids, 2004, 29(1/2): 1-29
[4] Jia J M, Chen J G, Tang L Y, et al. Investigation on microstructure and morphology features of steam-side oxidation scale and exfoliated oxide from the internal surface of 12X18H12T tube [J]. Proc. Chin. Soc. Elect. Eng., 2008, 28(17): 43-48
(贾建民, 陈吉刚, 唐丽英等. 12X18H12T钢管蒸汽侧氧化皮及其剥落物的微观结构与形貌特征 [J]. 中国电机工程学报, 2008, 28(17): 43-48)
[5] Chen Y, Sridharan K, Allen T R. Corrosion behavior of ferritic-martensitic steel T91 in supercritical water [J]. Corros. Sci., 2006, 48: 2843-2854
[6] Ren X, Sridharan K, Allen T R. Corrosion of ferritic- martensitic steel HT9 in supercritical water [J]. J. Nucl. Mater., 2006, 358: 227-234
[7] Ren X W. Corrosion of ferritic-martensitic steels and Ni-based alloys in supercritical water [D]. Madison: University of Wisconsin-Madison, 2008
[8] Tan L, Yang Y, Allen T R. Oxidation behavior of iron-based alloy HCM12A exposed in supercritical water [J]. Corros. Sci., 2006, 48: 3123-3138
[9] Was G S, Ampornrat P, Gupta G, et al. Corrosion and stress corrosion cracking in supercritical water [J]. J. Nucl. Mater., 2007, 371:176-201
[10] Was G S, Allen T R. Time, temperature and dissolved oxygen dependence of oxidation of austenitic and ferritic-martensitic alloys in supercritical water [A]. Proceedings of ICAPP'05 [C]. Seoul: 2005, Paper 5690
[11] Ampornrat P, Was G S. Oxidation of ferritic-martensitic alloys T91,HCM12A and HT-9 in supercritical water [J]. J. Nucl. Mater., 2007, 371: 1-17
[12] Ampornrat P, Bahn C B, Was G S. Corrosion and stress corrosion cracking of ferritic-martensitic alloys in supercritical water [A]. Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power System-Water Reactors-TMS [C]. Salt Lake: 2005, 1387-1395
[13] Yin K J, Qiu S Y, Tang R, et al. Corrosion behavior of steel P92 in supercritical water [J]. Corros. Prot., 2010, 31(5): 334-337
(尹开锯, 邱绍宇, 唐睿等. P92 钢在超临界水中的腐蚀行为 [J]. 腐蚀与防护, 2010, 31(5): 334-337)
[14] Yin K J, Qiu S Y, Tang R, et al. Characterization of the porosity of the oxide scales on feeritic-martensitic steel P91 and P92 exposed in supercritical water [J]. J. Chin. Soc. Corros. Prot., 2010, 30(1): 1-5
(尹开锯, 邱绍宇, 唐睿等. 铁素体-马氏体钢P91和P92在超临界水中腐蚀后氧化膜多孔性分析 [J]. 中国腐蚀与防护学报, 2010, 30(1): 1-5)
[15] Zhu F W, Zhang L F, Tang R, et al. Corrosion behavior of ferritic-martensitic steel P92 in supercritical water [J]. At. Energy Sci. Technol., 2010, 44(8): 979-983
(朱发文, 张乐福, 唐睿等. 铁素体马氏体钢P92在超临界水中的腐蚀性能 [J]. 原子能科学技术, 2010, 44(8): 979-983)
[16] Zhu F W, Zhang L F, Qiao P P, et al. Corrosion behaviors of candidate materials for supercritical-cooled water reactor [J]. Nucl. Power Eng., 2009, 30(5): 62-66
(朱发文, 张乐福, 乔培鹏等. 超临界水堆候选材料的腐蚀特性研究 [J]. 核动力工程, 2009, 30(5): 62-66)
[17] Zhang N Q, Xu H, Li B R, et al. Influence of the dissolved oxygen content on corrosion of the ferritic-martensitic steel P92 in supercritical water [J]. Corros. Sci., 2012, 56: 123-128
[18] Zhang N Q, Xu H, Bai Y, et al. Influence of dissolved oxygen concentration on oxidation of low alloy steel T24 exposed to supercritical water [J]. Proc. Chin. Soc. Elect. Eng., 2011, 31(35): 123-128
(张乃强, 徐鸿, 白杨等. 溶解氧浓度对低合金钢T24在超临界水中氧化的影响 [J]. 中国电机工程学报, 2011, 15(12): 123-128)
[19] Zhang N Q, Bai Y, Yuan X N, et al. Corrosion behavior of austenitic and ferritic/martensitic steels exposed in supercritical water with dissolved oxygen [J]. Appl. Mech. Mater., 2011, 71-78: 2916-2919
[20] Zhang N Q, Li B R, Bai Y, et al. Oxidation of austenitic Steel TP347HFG exposed to supercritical water with different dissolved oxygen concentration [J]. Appl. Mech. Mater., 2011, 148/149: 1179-1183
[21] Chen H W, Li Y H, Liang H Z. Experimental study on boiler high temperature corrosion [J]. Proc. Chin. Soc. Elect. Eng., 2003, 23(1): 167-170
(陈鸿伟, 李永华, 梁化忠. 锅炉高温腐蚀实验研究 [J]. 中国电机工程学报, 2003, 23(1): 167-170)
[22] Cheng J F, Xu M H, Zeng H C, et al. A study of oxidation dynamics of chromium at high temperature [J]. Proc. Chin. Soc. Elect. Eng., 2002, 22(8): 135-138
(程俊峰, 徐明厚, 曾汉才等. 高温下Cr的氧化动力学研究 [J]. 中国电机工程学报, 2002, 22(8): 135-138)
[23] Dooley R B. Cycle chemistry guidelines for fossil plants:oxygenated treatment [R]. Palo Alto, California:Electric Power Research Institute, 2005: 2-28
[24] Xi'an thermal power research institute Co., Ltd. DL/T 912-2005 Quality criterion of water and steam for supercritical pressure units in fossil fuel power plant [S]. Beijing: China national Development and Reform Commission, 2005
(西安热工研究院有限公司. DL/T 912-2005 超临界火力发电机组水汽质量标准 [S]. 北京: 中华人民共和国国家发展和改革委员会, 2005)
[25] Jiang H J, Chen R J. Research on quality control technology of steam and water for ultra supercritical units [R]. Beijing: Huaneng Power International, INC, 2005
(蒋浩君, 陈仁杰. 超超临界机组电站汽水品质控制技术研究 [R]. 北京: 华能国际股份有限公司, 2005)
[26] Fujii C T, Meussner R A. Oxide structures produced on iron-chromium alloys by a dissociative mechanism [J]. J. Electrochem. Soc., 1963, 110: 1195-1204
[27] Ehlers J, Young D J, Smaardijk E J, et al. Enhanced oxidation of the 9% Cr steel P91 in water vapour containing environments [J]. Corros. Sci., 2006, 48: 3428-3454
[28] Othman N K, Zhang J, Young D J. Temperature and water vapour effects on the cyclic oxidation behaviour of Fe-Cr alloys [J]. Corros. Sci., 2010, 52: 2827-2836
[1] 魏征, 马保吉, 李龙, 刘潇枫, 李慧. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[2] 孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[3] 刘晓, 王海, 朱忠亮, 李瑞涛, 陈震宇, 方旭东, 徐芳泓, 张乃强. 电站用奥氏体耐热钢HR3C与Sanicro25在超临界水中的氧化特性[J]. 中国腐蚀与防护学报, 2020, 40(6): 529-538.
[4] 谢冬柏, 洪昊, 王文, 彭晓, 多树旺. 模拟燃烧环境介质和温度对不锈钢表面氧化物形态的影响研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.
[5] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[6] 王廷勇, 董如意, 许实, 王辉. 石墨烯改性Ti/IrTaSnSb-G金属氧化物阳极在低温和低盐NaCl溶液中的电化学性能[J]. 中国腐蚀与防护学报, 2020, 40(3): 289-294.
[7] 方旭东, 刘晓, 徐芳泓, 李瑞涛, 朱忠亮, 张乃强. 超超临界电站国产奥氏体钢C-HRA-5在超临界水中的氧化特性[J]. 中国腐蚀与防护学报, 2020, 40(3): 266-272.
[8] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[9] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[10] 郑艳欣, 刘颖, 宋青松, 郑峰, 贾玉川, 韩培德. 含铁铜基陶瓷复合材料高温氧化行为与耐磨性研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[11] 范益,陈林恒,蔡佳兴,代芹芹,马宏驰,程学群. 热轧AH36船板钢在室内仓储条件下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[12] 徐勋虎,何翠群,向军淮,王玲,张洪华,郑晓冬. Co-20Re-25Cr-1Si合金在0.1 MPa纯O2中的高温氧化行为[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[13] 姜冬雪,付颖,张峻巍,张伟,辛丽,朱圣龙,王福会. 钛合金表面Al2O3陶瓷膜制备及性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[14] 王毅,张盾. 铋系可见光催化海洋防污材料研究进展[J]. 中国腐蚀与防护学报, 2019, 39(5): 375-386.
[15] 魏欣欣,张波,马秀良. FeCr15Ni15单晶600 ℃下热生长氧化膜的TEM观察[J]. 中国腐蚀与防护学报, 2019, 39(5): 417-422.