Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (2): 171-177    DOI: 10.11902/1005.4537.2013.084
  研究报告 本期目录 | 过刊浏览 |
Zr-1Nb-xGe合金在400 ℃过热蒸汽中耐腐蚀性能的研究
张金龙1,2, 屠礼明1,2, 谢兴飞1,2, 姚美意1,2, 周邦新1,2
1. 上海大学微结构重点实验室 上海 200444;
2. 上海大学材料研究所 上海 200072
Corrosion Resistance of Zr-1Nb-xGe Alloys in Superheated Steam at 400 ℃
ZHANG Jinlong1, 2, TU Liming1, 2, XIE Xingfei1, 2, YAO Meiyi1, 2, ZHOU Bangxin1, 2
1. Laboratory for Microstructures, Shanghai University, Shanghai 200444, China;
2. Institute of Materials, Shanghai University, Shanghai 200072, China
全文: PDF(2620 KB)   HTML
摘要: 

利用高压釜腐蚀实验研究了Zr-1Nb-xGe (x=0,0.05,0.1,0.2,质量分数,%) 合金在400 ℃,10.3 MPa过热蒸汽中的耐腐蚀性能;利用SEM和TEM分别观察了合金和氧化膜的显微组织。结果表明:添加Ge可以改善Zr-1Nb合金的耐腐蚀性能,当Ge含量为0.05%时效果最佳。在Zr-1Nb-xGe合金中存在4种第二相,分别是β-Nb,Zr(Nb,Fe,Cr)2,Zr(Nb,Fe,Cr,Ge)2和尺寸较大的Zr3Ge。Ge在Zr-1Nb合金α-Zr基体中的最大固溶含量在0.05%~0.1%之间,固溶的Ge可以有效延缓氧化膜中显微组织的演化,从而改善合金的耐腐蚀性能;当Ge含量超过合金的固溶含量时,会形成Zr(Nb,Fe,Cr,Ge)2以及尺寸较大的Zr3Ge第二相,Zr3Ge会使耐腐蚀性能降低。

关键词 Zr-1Nb合金Ge耐腐蚀性能显微组织    
Abstract:The corrosion resistance of Zr-1Nb-xGe(x=0, 0.05, 0.1, 0.2, mass fraction, %) alloys was investigated in superheated steam at 400 ℃, 10.3 MPa by autoclave tests. The microstructures of the alloys and oxide scales on the corroded specimens were observed by SEM and TEM. The results show that the corrosion resistance of the Zr-1Nb alloy in superheated steam at 400 ℃, 10.3 MPa may be enhanced by Ge addition. The alloy with 0.05% Ge shows the best corrosion resistance. In Zr-1Nb-xGe alloys, there are four types of second phase particles (SPPs), including β-Nb, Zr(Nb,Fe,Cr)2, Zr(Nb,Fe,Cr,Ge)2 and coarse Zr3Ge SPPs, and the maximum solid solubility of Ge in the α-Zr matrix of Zr-1Nb alloy is 0.05%~0.1%. It is noted that the Ge solid soluted in the α-Zr matrix can effectively slow down the microstructural evolution of oxide scale, thereby enhancing the corrosion resistance of the alloy. When the Ge content exceeds its solid solubility, Ge was precipitated as Zr(Nb,Fe,Cr,Ge)2 and Zr3Ge SPPs. The coarse Zr3Ge SPPs will decrease the corrosion resistance of the alloys.
Key wordsZr-1Nb alloy    Ge    corrosion resistance    microstructure
收稿日期: 2013-05-21     
ZTFLH:  TG174.3  
基金资助:国家自然科学基金项目(50971084) 和国家先进压水堆重大专项 (2011ZX06004-023) 资助
通讯作者: jlzhang@shu.edu.cn   
作者简介: 张金龙,男,1964年生,副研究员,研究方向为核材料

引用本文:

张金龙, 屠礼明, 谢兴飞, 姚美意, 周邦新. Zr-1Nb-xGe合金在400 ℃过热蒸汽中耐腐蚀性能的研究[J]. 中国腐蚀与防护学报, 2014, 34(2): 171-177.
ZHANG Jinlong, TU Liming, XIE Xingfei, YAO Meiyi, ZHOU Bangxin. Corrosion Resistance of Zr-1Nb-xGe Alloys in Superheated Steam at 400 ℃. Journal of Chinese Society for Corrosion and protection, 2014, 34(2): 171-177.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.084      或      https://www.jcscp.org/CN/Y2014/V34/I2/171

[1] Liu J Z. Structure Nuclear Materials [M]. Beijing: Chemical Industry Press, 2007
(刘建章. 核结构材料 [M]. 北京: 化学工业出版社, 2007)
[2] Zhao W J, Zhou B X, Miao Z, et al. The development of high-performance zirconium alloy in China [J]. Atom. Energ. Sci. Technol., 2005, 39(suppl.): 1-9
(赵文金, 周邦新, 苗志等. 我国高性能锆合金的发展 [J]. 原子能科学技术, 2005, 39(增刊): 1-9)
[3] Sabol G P. An alloy development success [A]. Zirconium in the Nuclear Industry: Fourteenth International Symposium. ASTM STP 1467 [C]. Stockholm: ASTM International, 2004: 3-24
[4] Nikulina A V, Markelov V A, Peregud M M. Zirconium alloy E635 as a material for fuel rod cladding and other components of VVER and RBMK cores [A]. Zirconium in the Nuclear Industry: Eleventh International Symposium. ASTM STP 1295 [C]. Garmisch-Partenkirchen: ASTM International, 1996: 785-804
[5] Zhou B X, Zhao W J, Mao Z, et al. New Zirconium Alloy Research [M]. Beijing: Chemical Industry Press, 1997
(周邦新, 赵文金, 苗志等. 新锆合金的研究 [M]. 北京: 化学工业出版社, 1997)
[6] Zhao W J. The research of high-performance zirconium alloy in nuclear industry [J]. Rare Met. Lett., 2004, 23(5): 15-20
(赵文金. 核工业用高性能锆合金的研究 [J]. 稀有金属快报, 2004, 23(5): 15-20)
[7] Park J Y, Choi B K, Yoo S J, et al. Corrosion behavior and oxide properties of Zr-1.1 wt% Nb-0.05 wt% Cu alloy [J]. J. Nucl. Mater., 2006, 359: 59-68
[8] Yao M Y, Zou L H, Xie X F, et al. Effect of Bi addition on the corrosion resistance of Zr-4 in superheated steam at 400 ℃/10.3 MPa [J]. Acta Metall. Sin., 2012, 48: 1097-1102
(姚美意, 邹玲红, 谢兴飞等. 添加Bi对Zr-4合金在400 ℃/10.3 MPa过热蒸汽中耐腐蚀性能的影响 [J]. 金属学报, 2012, 48: 1097-1102)
[9] Zhu L, Yao M Y, Sun G C, et al. Effect of Bi addition on the corrosion resistance of Zr-1Nb alloy in deionized water at 360 ℃ and 18.6 MPa [J]. Acta Metall. Sin., 2013, 49: 51-57
(朱莉, 姚美意, 孙国成等. 添加Bi对Zr-1Nb合金在360 ℃和18.6 MPa去离子水中耐腐蚀性能的影响 [J]. 金属学报, 2013, 49: 51-57)
[10] Xie X F, Zhang J L, Zhu L, et al. Study on the corrosion resistance of Zr-0.7Sn-0.35Nb-0.3Fe-xGe alloy in lithiated water at high temperature under high pressure [J]. Acta Metall. Sin., 2012, 48(12): 1487-1494
(谢兴飞, 张金龙, 朱莉等. Zr-0.7Sn-0.35Nb-0.3Fe-xGe 合金在高温高压LiOH水溶液中耐腐蚀性能的研究 [J]. 金属学报, 2012, 48(12): 1487-1494)
[11] Li S L, Yao M Y, Zhang X, et al. Effect of Cu addition on the corrosion resistance of M5 alloy in superheated steam at 500 ℃ [J]. Acta Metall. Sin., 2011, 47:163-168
(李士炉, 姚美意, 张欣等. 添加Cu对M5合金在500 ℃过热蒸汽中耐腐蚀性能的影响 [J]. 金属学报, 2011, 47: 163-168)
[12] Charquet D, Hahn R, Ortlib E, et al. Solubility limits and for mation of intermetallic precipitates in ZrSnFeCr alloys [A]. Zircorium in the Nuclear Industry: 8th International Symposium. ASTM STP 1023 [C]. Philadelphia: ASTM International, 1989: 405-422
[13] Anada H, Herb B J, Nomoto K, et al. Effect of annealing temperature on corrosion behavior and ZrO2 microstructure of zircaloy-4 cladding tube [A]. Zirconium in the Nuclear Industry: 11th International Symposium, ASTM STP 1295 [C]. Garmisch-Partenkirchen Germany: ASTM International, 1996: 74-93
[14] Yao M Y, Zhou B X, Li Q, et al. A superior corrosion behavior of Zircaloy-4 in lithiated water at 360 ℃/18.6 MPa by β-quenching [J]. J. Nucl. Mater., 2008, 374: 197-203
[15] Jeong Y H, Kim H G, Kim T H. Effect of β phase, precipitates and Nb-concentaration in matrix on corrosion and oxide characterstics of Zr-xNb alloys [J]. J. Nucl. Mater., 2003, 317: 1-12
[16] Rudling P, Wikmark G. A unified model of Zircaloy BWR corrosion and hydriding mechanisms [J]. J. Nucl. Mater., 1999, 265: 44-59
[17] Comstock R J, Schoenberger G, Sable G P. Influence of processing variables and alloy chemistry on the corrosion behavior of ZIRLO nuclear fuel cladding [A]. Zirconium in the Nuclear Industry: Eleventh International Symposium. ASTM STP 1295 [C]. Garmisch-Partenkirchen Germany: 1996: 710-725
[18] Zhou B X, Li Q, Yao M Y, et al. Effect of water chemistry and composition on microstructural evolution of oxide on Zr alloys [A]. Zirconium in the Nuclear Industry: 15th International Symposium, ASTM STP 1505 [C]. Sunriver Oregon: ASTM International, 2008: 360-380
[19] Zhou B X, Li Q, Yao M Y, et al. Study on the microstructure of Zr-4 alloy oxide film [J]. Corros. Prot., 2009, 30: 589-594
(周邦新, 李强, 姚美意等. Zr-4合金氧化膜的显微组织研究 [J]. 腐蚀与防护, 2009, 30: 589-594)
[20] Zhou B X, Li Q, Liu W Q, et al. The effects of water chemistry and composition on the microstructure evolution of oxide films on zirconium alloys during autoclave tests [J]. Rare Met., 2006, 35: 1009-1016
(周邦新, 李强, 刘文庆等. 水化学及合金成分对锆合金腐蚀时氧化膜显微组织演化的影响 [J]. 稀有金属材料与工程, 2006, 35: 1009-1016)
[21] Wang J K. Modern Ge Metallurgy [M]. Beijing: Metallurgy Industry Press, 2005
(王吉坤. 现代锗冶金 [M]. 北京: 冶金工业出版社, 2005)
[22] Li T F. Metal High Temperature Oxidation and Thermal Corrosion [M]. Beijing: Chemical Industry Press, 2003
(李铁藩. 金属高温氧化和热处理 [M]. 北京: 化学工业出版社, 2003)
[23] Weidinger H G, Ruhmann H, Cheliotis G, et al. Corrosion-electrochemical properties of zirconium intermetallics [A]. Zirconium in the Nuclear Industry: 9th International Symposium, ASTM STP 1132 [C]. Kobe Japan: ASTM International, 1991: 499-535
[24] Toffolon-Masclet C, Brachet J C, Jago G. Studies of second phase particles in different zirconium alloys using extractive carbon replica and an electrolytic anodic dissolution procedure [J]. J. Nucl. Mater., 2002, 305: 224-231
[25] Cao X X, Yao M Y, Peng J C, et al. Corrosion behaviour of Zr(Fex,Cr1-x)2 alloys in 400 ℃ superheated steam [J]. Acta Metall. Sin., 2011, 47: 882-886
(曹潇潇, 姚美意, 彭剑超等. Zr(Fex, Cr1-x)2合金在 400 ℃过热蒸汽中的腐蚀行为 [J]. 金属学报, 2011, 47: 882-886)
[1] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[2] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] 欧阳跃军,胡婷,王佳音,谢治辉. 镁合金表面层状双氢氧化物的电化学沉积和表征[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.
[4] 史昆玉,张进中,张毅,万毅. Nb2N涂层制备及其耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[5] 王凯, 易耀勇, 卢清华, 易江龙, 江泽新, 马金军, 张宇. 基于窄间隙焊接的热模拟峰值温度对Q690高强钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(5): 447-454.
[6] 彭晚军, 丁纪恒, 陈浩, 余海斌. 生物基缓蚀剂糠醇缩水甘油醚的缓蚀性能及机理[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
[7] 蒋光锐, 刘广会. Zn-Al-Mg合金的凝固组织及其耐腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 191-196.
[8] 牛振国, 郭浦山, 叶宏, 杨丽景, 许赪, 宋振纶. Zn-7Mg合金热处理显微组织演变及耐蚀性能研究[J]. 中国腐蚀与防护学报, 2017, 37(4): 347-353.
[9] 滕彧,陈旭,何川,王义闯,王冰. 显微组织对X70钢在含有硫酸盐还原菌的3.5%NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 168-174.
[10] 张建春,左龙飞,蒋金洋,麻晗,宋丹. 耐海水腐蚀钢筋00Cr10MoV的组织结构及性能研究[J]. 中国腐蚀与防护学报, 2016, 36(4): 363-369.
[11] 苏艳,张伦武,钟勇. 5A90铝锂合金显微组织及海洋大气环境腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(3): 260-266.
[12] 马旭,李全安,井晓天. 热处理对Mg-10Gd-2.5Nd-0.5Zr合金组织和耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(2): 143-149.
[13] 暨波,张新明,张卓夫,叶凌英,李文健. Yb对2519A铝合金抗剥落腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(3): 279-286.
[14] 黄本生,江仲英,潘欢欢,袁鹏斌,刘清友. 热处理工艺对G105钻杆材料抗腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2012, 32(1): 67-69.
[15] 王平,程英亮,张昭. Ni-SiC纳米复合镀层腐蚀行为的研究[J]. 中国腐蚀与防护学报, 2011, 31(5): 371-376.