Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (1): 19-26    DOI: 10.11902/1005.4537.2013.072
  本期目录 | 过刊浏览 |
电站锅炉关键部件材料高温蒸汽氧化研究进展
鲁金涛(), 谷月峰
西安热工研究院有限公司 西安 710032
High-temperature Steam Oxidation Behavior of Alloys Used for Key Parts of the Power Plant Boiler
LU Jintao(), GU Yuefeng
Xi'an Thermal Power Research Institute Co., Ltd., Xi'an 710032, China
全文: PDF(863 KB)   HTML
摘要: 

因其特殊的服役环境,电站锅炉关键材料需要同时满足力学性能与抗高温腐蚀性能的需求。本文从高温蒸汽氧化的角度,讨论了现有锅炉合金及下一代电站合金的高温蒸汽腐蚀研究进展和高温蒸汽氧化机理。

关键词 蒸汽氧化低合金钢Cr钢奥氏体钢高温合金    
Abstract

Alloys used for power station boilers need to meet simultaneously the requirements of the high temperature mechanical properties and corrosion resistance because of the harsh service environment. The purpose of this paper is to review the existing information regarding steam oxidation behavior and oxidation mechanism of alloys, which are used for the present power plant boiler and designed to be used in next generation power station.

Key wordssteam oxidation    low-alloy steel    Cr steel    austenitic steel    superalloy
收稿日期: 2013-05-10     
ZTFLH:  TG172.82  
基金资助:国家自然科学基金项目(51301130) 资助
作者简介: null

鲁金涛,男,1984年生,博士,研究方向为电站金属材料腐蚀与防护

引用本文:

鲁金涛, 谷月峰. 电站锅炉关键部件材料高温蒸汽氧化研究进展[J]. 中国腐蚀与防护学报, 2014, 34(1): 19-26.
Jintao LU, Yuefeng GU. High-temperature Steam Oxidation Behavior of Alloys Used for Key Parts of the Power Plant Boiler. Journal of Chinese Society for Corrosion and protection, 2014, 34(1): 19-26.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.072      或      https://www.jcscp.org/CN/Y2014/V34/I1/19

图1  氧化膜的溶解机制模型[47]
[1] Lépingle V, Louis G, Petelot D, et al. High temperature corrosion behaviour of some boiler steels in pure water vapor, high temperature corrosion and protection of materials[J]. Mater. Sci. Forum, 2001, 369-372: 239-246
[2] Steve O, Tony F. Simulating steam oxidation of high temperature plant under laboratory conditions: practice and interpretation of data[J]. Mater. Res., 2004, 7(1): 141-145
[3] Zhao H C, Ling R H, Jia J M, et al. New heat-resistant steel T23's performance characteristics and early failure[J]. Chin. Soc. Elec. Eng., 2011, 31(20): 107-113
[3] (赵慧传, 凌荣华, 贾建民等. 新型耐热钢T23的特性与早期失效分析[J]. 中国电机工程学报, 2011, 31(20): 107-113)
[4] Zhang N Q, Xu H, Bai Y. Influence of dissolved oxygen concentration on oxidation of low alloy, steel T24 exposed to supercritical water[J]. Chin. Soc. Elec. Eng., 2011, 31(35): 123-128
[4] (张乃强, 徐鸿, 白杨. 溶解氧浓度对低合金钢T24在超临界水中氧化的影响[J]. 中国电机工程学报, 2011, 31(35): 123-128)
[5] Aríztegui A, Gomez-Acebo T, Castro F. Steam oxidation of ferritic steels: kinetics and microstructure[J]. Bol. Soc. Esp. Cerám. Vidr., 2000, 39: 305-311
[6] Solberg H, Hawkins G, Potter A. Corrosion of unstressed steel specimens by high temperature steam[J]. Trans. Amer. Soc. Mech. Eng., 1942, 64: 303-311
[7] Kharina I, Nikifrova V, Ryabchenkov A. Effect of Si content on the oxidation resistance of low alloyed steel in superheated steam[J]. Zaschita Metallov, 1968, 4(5): 570-574
[8] Wright I, Pint B A. An assessment of the high-temperature oxidation behavior of Fe-Cr steels in water vapor and steam [A]. NACE Corrosion/2002 [C]. Denver, 2002: 02377
[9] Yang J B, Zheng J, Li S X, et al. Review on the formation and exfoliation mechanism of steam-side oxidation scale on the boiler tube with high temperature[J]. Boiler Technol., 2010, 41(6): 44-50
[9] (杨景标, 郑炯, 李树学等. 锅炉高温受热面蒸汽侧氧化皮的形成及剥落机理研究进展[J]. 锅炉技术, 2010, 41(6): 44-50)
[10] Ehlers R, Smaardijk E, Penkala H, et al. Effect of steel composition on the bell-shape temperature dependence of oxidation in water vapour containing environments [A]. Proceedings of the International Corrosion Congress [C]. Cape Town, 1999: 336-345
[11] Zurek J, Wessel E, Niewolak L. Anomalous temperature dependence of oxidation kinetics during steam oxidation of ferritic steels in the temperature range 550-650 ℃[J]. Corros. Sci., 2004, 46: 2301-2317
[12] Sanchez L, Hierro M P, Perez F. Effect of chromium content on the oxidation behaviour of ferritic steels for applications in steam atmospheres at high temperatures[J]. Oxid. Met., 2009, 71(3/4): 173-186
[13] Laverde D, Gomez-Acebo T, Castro F. Continuous and cyclic oxidation of T91 ferritic steel under steam[J]. Corros. Sci., 2004, 46(3): 613-631
[14] Yin K J, Qiu S Y, Tang R. Corrosion behavior of steel P92 in supercritical water[J]. Corros. Prot., 2010, 31(5): 336-337
[14] (尹开锯, 邱绍宇, 唐睿. P92 钢在超临界水中的腐蚀行为[J]. 腐蚀与防护, 2010, 31(5): 336-337)
[15] Yin K J, Qiu S Y, Tang R. Characterization of the porosity of the oxide scales on gerritic-martensitic steel P91 and P92 exposed in supercritical water[J]. J. Chin. Soc. Corros. Prot., 2010, 30(1): 1-5
[15] (尹开锯, 邱绍宇, 唐睿. 铁素体-马氏体钢P91和P92 在超临界水中腐蚀后的氧化膜多空性分析[J]. 中国腐蚀与防护学报, 2010, 30(1): 1-5)
[16] Montgomery M, Hansson A N, Vilhelmsen T, et al. Steam oxidation of X20CrMoV121: comparison of laboratory exposures and in situ exposure in power plants[J]. Mater. Corros., 2012, 63(8): 674-684
[17] Cory N, Herrington T. Kinetics of oxidation of ferrous alloys by superheated steam[J]. Oxid. Met., 1987, 28(5/6): 237-258
[18] Eberle F, Kitterman J. In Behavior of Superheater Alloys in High-Temperature, High-Pressure Steam [M]. New York: ASME, 1968
[19] Zhang D Q, Xu J J, Zhao G Q, et al. Oxidation characteristic of ferritic-martensitic steel T91 in water vapour atmosphere[J]. Chin. J. Mater. Res., 2008, 22(6): 599-605
[19] (张都清, 徐敬军, 赵国群. 9Cr-1Mo钢在含水蒸汽气氛中的氧化行为[J]. 材料研究学报, 2008, 22(6): 599-605)
[20] Abe F, Igarashi M, Wanikawa S, et al. R&D of advanced ferritic steels of 650 ℃ USC boilers [A]. Proc. of the 5th International Charles Parsons Turbine Conference [C]. Cambridge: IOM Communications Ltd., 2000: 590-605
[21] Ishitsuka T, Inoue Y, Ogawa H. Effect of silicon on the steam oxidation resistance of a 9%Cr heat resistant steel[J]. Oxid. Met., 2004, 61(1/2): 125-142
[22] Jia J M, Chen J G, Li Z G. Countermeasures against massive exfoliation of oxidation scale on the internal surface of coar segrained 18-8 type stainless steel boiler tubes[J]. Elec. Power, 2008, 41(5): 37-41
[22] (贾建民, 陈吉刚, 李志刚. 18-8系列粗晶不锈钢锅炉管内壁氧化皮大面积剥落防治对策[J]. 中国电力, 2008, 41(5): 37-41)
[23] Deng Y, Liu S B, Peng F F, et al. High Temperature steam oxidation resistance of TP347H panel division super-heater tubes for 600 MW super-critical boiler[J]. Corros. Prot., 2009, 30(2): 124-127
[23] (邓勇, 刘盛波, 彭芳芳等. 600 MW超临界锅炉TP347H屏式过热器管高温蒸气氧化腐蚀探讨[J]. 腐蚀与防护, 2009, 30(2):124-127)
[24] Huang J, Zhou K, Xu J, et al. On the failure of steam-side oxide scales in high temperature components of boilers during unsteady thermal processes[J]. J. Loss Prevent. Proc. Ind., 2012, 3: 1-10
[25] Jia J M, Montgomery M. Influence of cold work hardending surface of austenitic steel tubes used in ultrasupercrtical boliers upon the tubes' steam oxidation behavior[J]. Elec. Power, 2009, 38(6): 32-37
[25] (贾建民, Montgomery M. 超超临界机组锅炉用不锈钢管表面冷作硬化处理对其抗蒸汽氧化性能的影响[J]. 热力发电, 2009, 38(6): 32-37)
[26] Yue Z, Fu M, Wang X, et al. Effect of shot peening on the oxidation resistance of TP304H and HR3C steels in water vapor[J]. Oxid. Met., 2012, 77: 17-26
[27] Hansson A, Danielsen H, Grumsen F, et al. Microstructure investigation of the oxide formed on TP347HFG during long-term steam oxidation[J]. Mater. Corros., 2010, 8: 665-675
[28] Guo Y, Tang L Y, Zhou R C, et al. Effect of grain size and surface state on steam oxidation behavior of s30432 steel[J]. J. Chin. Soc. Pow. Eng., 2011, 31(8): 644-648
[28] (郭岩, 唐丽英, 周荣灿等. 晶粒尺寸和表面状态对S30432钢蒸汽氧化行为的影响[J]. 动力工程学报, 2011, 31(8): 644-648)
[29] Tang L Y, Jia J M. Microstructure and growth mechanism of the oxide scale formed on HR3C at the steam side in ultra supercritical (USC) units[J]. Corros. Prot., 2011, 32(10): 775-778
[29] (唐丽英, 贾建民. 超超临界机组HR3C不锈钢蒸汽侧氧化层的微观结构和生长机理[J]. 腐蚀与防护, 2011, 32(10): 775-778)
[30] Maziasz P, Pint B A, Shingledecker J, et al. Austenitic stainless steels and alloys with improved high-temperature performance for advanced microturbine recuperators [A]. Proceedings of ASME Turbo Expo 2004: Power for Land, Sea, and Air [C]. Vienna, Austria, 2004: 54239
[31] Sarver J M, Tanzosh J. An evaluation of the steam side oxidation of candidate USC materials at 650 ℃ and 800 ℃ [A]. Proceedings to the Fourth International Conference on Advances in Materials Technology for Fossil Power Plants [C]. South Carolina: ASM International, 2005: 1326-1340
[32] Yamamoto Y, Brady M, Lu Z P, et al. Creep-resistant Al2O3-forming austenitic stainless steels[J]. Science, 2007, 316: 433-436
[33] Jeffrey M. Steam oxidation testing of candidate ultrasupercritical boiler materials [A]. 28th International Technical Conference on Coal Utilization and Fuel Systems [C]. Florida, 2003: 1735
[34] Peraldi R, Pint B A. Effect of Cr and Ni contents on the oxidation behavior of ferritic and austenitic model alloys in air with water vapor[J]. Oxid. Met., 2004, 61(5/6): 463-483
[35] Gordon R. Steam oxidation and chromia evaporation in ultrasupercritical steam boilers and turbines[J]. J. Electrochem. Soc., 2009, 156(9): 292-297
[36] Li H F, Fan H Y, Zhang Q. Corrosion behavior of C-276 alloy in supercritical water at 650 ℃/25 MPa[J]. At. Energy Sci. Technol., 2011, 45(7): 822-827
[36] (李海丰, 范洪远, 张强等. C-276合金在650 ℃/25 MPa超临界水中的腐蚀行为[J]. 原子能科学技术, 2011, 45(7): 822-827)
[37] Zhao S Q, Xie X S, Dong J X. Oxidation resistance of Inconel 740 in static air or air-steam mixture[J]. J. Chin. Soc. Pow. Eng., 2011,31(10): 797-802
[37] (赵双群, 谢锡善, 董建新. Inconel 740 合金在空气和含有水蒸气的空气中的氧化研究[J]. 动力工程学报, 2011, 31(10): 797-802)
[38] Guillou S, Cabet C, Desgranges C. Influence of hydrogen and water vapour on the kinetics of chromium oxide growth at high temperature[J]. Oxid. Met., 2011, 76: 193-214
[39] Buscail H, Rolland R, Issartel C, et al. Effects of water vapour on the oxidation of a nickel-base 625 alloy between 900 and 1100 ℃[J]. J. Mater. Sci., 2011, 46: 5903-5915
[40] Patrice B, Lionel A, Stéphane M. Influence of water vapour on the rate of oxidation of a Ni-25wt.%Cr alloy at high temperature[J]. Oxid. Met., 2013, 79: 517-527
[41] Takeda Y, Kanaya M, Yamamoto S, et al. Oxidation and cracking behavior of nickel base superalloys under bending stress in advanced steam condition beyond 700 ℃ [A]. Challenges of Power Engineering and Environment [C]. Berlin: Springer Berlin Heidelberg, 2007: 1031-1036
[42] Yamauchi A, Suzuki Y, Sakaguchi N, et al. Microstructure and analysis of oxide scales formed on Cr-Si-Ni compacts in air and H2O-containing atmosphere[J]. Corros. Sci., 2010, 52(6): 2098-2103
[43] Saunders S. The oxidation behavior of metals and alloys at high temperatures in atmospheres containing water vapour: A review[J]. Prog. Mater. Sci., 2008, 53: 775-837
[44] Jacob Y P, Hanappel V, Stroosnijder M, et al. The effect of gas composition on the isothermal oxidation behavior of PM chromium[J]. Corros. Sci., 2002, 44(9): 2027-2039
[45] Jonsson T, Pujilaksono B, Hallstrom S. An ESEM in-situ investigation of the influence of H2O on iron oxidation at 500 ℃[J]. Corros. Sci., 2009, 51: 1914-1924
[46] Liu L, Yang Z G, Zhang C. Effect of water vapour on the oxidation of Fe-13Cr-5Ni martensitic alloy at 973 K[J]. Corros. Sci., 2012, 60: 90-97
[47] Fujii C T, Meussner R A. The mechanisms of the high-temperature oxidation of iron-chromium alloys in water vapour[J]. J. Electrochem. Soc., 1964, 111: 1215-1221
[48] Barry T I, Dinsdale A T, Gibsy J A, et al. A Thermodynamic Analysis of the System Fe-Cr-Ni-C-O Petten Symposium on Phase Diagrams [M]. Washington: Institute of Metals, 1990: 521-529
[49] Rapp R A. The high-temperature oxidation of metals forming cation- diffusion scale[J]. Metall. Mater. Trans., 1984, 15A: 765-782
[50] Hultquist G, Tveten B, Hörnlund E. Hydrogen in chromium: influence on the high-temperature oxidation kinetics in H2O, oxide-growth mechanisms, and scale adherence[J]. Oxid. Met., 2000, 54(1/2): 1-10
[51] Gordon R H, Derek H. Steam turbine materials and corrosion [A]. Proceedings of the 21st Annual Conference on Fossil Energy Materials [C]. Knoxville, 2007: 119-126
[52] Asteman H, Svensson J, Johansson L. Evidence for chromium evaporation influencing the oxidation of 304L: the effect of temperature and flow rate[J]. Oxid. Met., 2002, 57(3/4): 193-216
[53] Asteman H, Svensson J, Norell M, et al. Influence of water vapor and flow rate on the high temperature oxidation of 304L: Effect of chromium oxide hydroxide evaporation[J]. Oxid. Met., 2000, 54(1/2): 11-26
[54] Castaneda S, Perez F. Microstructure and volatile species determination of ferritic/martensitic FB2 steel in contact with Ar+40%H2O at high temperatures[J]. Oxid. Met., 2013, 79(1/2): 147-166
[55] Surman P. The oxidation of iron at controlled oxygen partial pressures: I-hydrogen/water vapor [J]. Corros. Sci., 1973, 13: 113-124
[56] Ehlers J, Young D J, Smaardijk E J, et al. Enhanced oxidation of the 9%Cr steel P91 in water vapour containing environments[J]. Corros. Sci., 2006, 48: 3428-3454
[57] Milewska A, Hierro M, Trilleros J, et al. Coating design using computational codes for steam oxidation conditions[J]. Mater. Sci. Forum, 2004, 461: 321-326
[58] Shen J N, Zhou L J, Li T F. High-temperature oxidation of Fe-Cr alloys in wet oxygen[J]. Oxid. Met., 1997, 48(3/4): 347-356
[59] Eberle F,Kitterman J. Behavior of superheater alloys in high temperature, high pressure steam [A]. Lien G E, ed. American Society of Mechanical Engineers [C]. New York: 1968: 67-75
[1] 刘晓, 王海, 朱忠亮, 李瑞涛, 陈震宇, 方旭东, 徐芳泓, 张乃强. 电站用奥氏体耐热钢HR3C与Sanicro25在超临界水中的氧化特性[J]. 中国腐蚀与防护学报, 2020, 40(6): 529-538.
[2] 方旭东, 刘晓, 徐芳泓, 李瑞涛, 朱忠亮, 张乃强. 超超临界电站国产奥氏体钢C-HRA-5在超临界水中的氧化特性[J]. 中国腐蚀与防护学报, 2020, 40(3): 266-272.
[3] 李烽杰,陈明辉,张哲铭,王硕,王福会. 金属搪瓷高温防护涂层的制备及其抗热震行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 411-416.
[4] 马云海. 喷丸处理对Super304H钢抗蒸汽氧化性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 245-252.
[5] 虞礼嘉,梁文萍,林浩,缪强,黄彪子,崔世宇. 激光重熔YSZ热障涂层950 ℃的热腐蚀行为[J]. 中国腐蚀与防护学报, 2019, 39(1): 77-82.
[6] 宋增意, 刘莉, 邓丽, 孙元, 周亦胄. N5镍基单晶高温合金在王水中的电化学溶解行为研究[J]. 中国腐蚀与防护学报, 2018, 38(4): 365-372.
[7] 孙井永,李秋实,郭洪波,宫声凯. Ni-Al涂层与单晶合金互扩散行为及其对界面合金组织稳定性的影响[J]. 中国腐蚀与防护学报, 2016, 36(5): 497-504.
[8] 潘俊艳,陈华辉,马峰,谢波,吴迎飞,赵赋,张祚炜. 低合金钢在高矿化度矿井水环境下的腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(3): 253-259.
[9] 吴多利, 张洪宇, 韦华, 郑启, 金涛, 孙晓峰. 4种改性的铝化物涂层对DZ38G合金热腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2014, 34(6): 502-506.
[10] 杨 超, 张慧霞 郭为民 付玉彬. 添加双氧水对高强度低合金钢在海水中
腐蚀影响的研究
[J]. 中国腐蚀与防护学报, 2013, 33(3): 205-210.
[11] 郭永安,李柏松,赖万慧,郭建亭,周兰章. 铸造镍基合金K444在900℃空气中的长期氧化行为[J]. 中国腐蚀与防护学报, 2012, 32(4): 285-290.
[12] 姚学军,王俭秋,左景辉,韩恩厚,柯伟. 微观组织对X52钢抗H2S腐蚀和开裂性能的影响[J]. 中国腐蚀与防护学报, 2012, 32(2): 95-101.
[13] 张泽海,孟杰. 一种镍基单晶高温合金的恒温氧化行为[J]. 中国腐蚀与防护学报, 2010, 30(4): 337-340.
[14] 刘杨;王磊;李伟涛;王富强. 电场处理对GH3044合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2010, 30(2): 129-134.
[15] 张恒 陈学群 常万顺. 冶金因素对钢点蚀诱发敏感性的影响[J]. 中国腐蚀与防护学报, 2009, 29(2): 127-131.