Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (2): 101-111    DOI: 10.11902/1005.4537.2013.069
  研究报告 本期目录 | 过刊浏览 |
3,5-二溴水杨醛-2-噻吩甲酰肼席夫碱缓蚀剂在油田水中对碳钢的缓蚀性能及分子动力学模拟
刘洁1, 2, 刘峥1, 刘进1, 谢思维1
1. 桂林理工大学化学与生物工程系 桂林 541004;
2. 中国石油化工股份有限公司茂名分公司炼油分部 茂名 525011
Inhibition Performance of a New 3,5-dibromosalicylaldehyde-2-thenoyl Hydrazine Schiff Base for Carbon Steel in Oilfield Water and Relevant Molecular Dynamics Simulation
LIU Jie1, 2, LIU Zheng1, LIU Jin1, XIE Siwei1
1. College of Chemical and Biological Engineering, Guilin University of Technology, Guilin 541004, China;
2. SINOPEC Maoming Company, Maoming 525011, China
全文: PDF(5764 KB)   HTML
摘要: 

合成了一种新的席夫碱缓蚀剂3,5-二溴水杨醛-2-噻吩甲酰肼 (L2),通过Tefel极化曲线、电化学阻抗、扫描电镜和分子动力学模拟方法研究了该缓蚀剂在模拟油田水中对碳钢的缓蚀效果,并探讨了其缓蚀机理和吸附行为。结果表明,L2在不同温度、H2S浓度、pH值和Cl-浓度条件下的模拟油田水中对碳钢均具有良好的缓蚀性能。分子动力学模拟结果表明,在水溶液中缓蚀剂L2分子可以稳定地平行吸附在金属表面,有效地将金属表面和水分子隔开,从而起到缓蚀作用,吸附方式为多位点化学吸附;同时L2形成的分子吸附膜可有效地抑制腐蚀离子 (Cl-和H3O+) 在吸附膜中的扩散,避免了金属表面与腐蚀介质接触而发生腐蚀,从而表现出良好的缓蚀性能。

关键词 席夫碱缓蚀性能碳钢模拟油田水分子动力学模拟    
Abstract:A new 3,5-dibromosalicylaldehyde-2-thenoyl hydrazine Schiff base compounds (L2) was synthesized. Its inhibition performance and adsorption behavior for carbon steel in a simulated oilfield water were investigated by electrochemical methods, scanning electron microscopy and molecular dynamics simulation respectively. The results indicated that L2 exhibits excellent corrosion inhibition performance for carbon steel in the simulated oilfield water, and also that in simulated oilfield waters with various pH values at different temperatures. The molecular dynamics simulation results proved that L2 molecules may parallel be adsorbed on the steel surface firmly via several reactive sites and packed together to form a dense monolayer to prevent the metal surface from water and corrosive medium in the liquid. In addition, L2 molecule monolayer can suppress the inwards migration of corrosive species. That is why L2 exhibits excellent corrosion inhibition performance.
Key wordsSchiff bases    corrosion inhibitor    carbon steel    simulated oilfield water    molecular dynamics
收稿日期: 2013-06-02     
ZTFLH:  TG174.42  
基金资助:国家自然科学基金项目 (21266006) 和广西自然科学基金项目 (2012GXNSFAA053034) 资助
通讯作者: 刘峥,E-mail:lisa4.6@163.com   
作者简介: 刘洁,男,1987年生,硕士生,研究方向为缓蚀剂的制备及应用

引用本文:

刘洁, 刘峥, 刘进, 谢思维. 3,5-二溴水杨醛-2-噻吩甲酰肼席夫碱缓蚀剂在油田水中对碳钢的缓蚀性能及分子动力学模拟[J]. 中国腐蚀与防护学报, 2014, 34(2): 101-111.
LIU Jie, LIU Zheng, LIU Jin, XIE Siwei. Inhibition Performance of a New 3,5-dibromosalicylaldehyde-2-thenoyl Hydrazine Schiff Base for Carbon Steel in Oilfield Water and Relevant Molecular Dynamics Simulation. Journal of Chinese Society for Corrosion and protection, 2014, 34(2): 101-111.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.069      或      https://www.jcscp.org/CN/Y2014/V34/I2/101

[1] Migahed M A, Nassar I F. Corrosion inhibition of tubing steel during acidization of oil and gas wells [J]. Electrochim. Acta, 2008, 53: 2877-2882
[2] Hu S Q, Hu J C, Fan C C. Corrosion inhibition of Q235 steel by a novel imidazoline compound under H2S and CO2 coexistence [J]. Acta Phy.-Chim. Sin., 2010, 26(8): 2163-2170
(胡松青, 胡建春, 范成成等. 新型咪唑啉化合物在H2S/CO2共存条件下对Q235钢的缓蚀性能 [J]. 物理化学学报, 2010, 26(8): 2163-2170)
[3] Chen S L, Liu Z, Liu J, et al. Corrosion inhibition behavior of self-assembled monolayer of 4-aminobenzoic acid Schiff bases for 20# carbon steel in CO2-saturated oilfield water [J]. J. Chem. Ind. Eng., 2012, 63(10): 3226-3235
(陈世亮, 刘峥, 刘洁等. 4-氨基苯甲酸席夫碱自组装缓蚀膜对20#钢在饱和CO2油田水中的缓蚀性能 [J]. 化工学报, 2012, 63(10): 3225-3235)
[4] Wu Y, Cheng C X, Shi S M, et al. Synthesis and structure properties of 3, 5-dibromosalicylaldehyde salicylhydrazone and its metal complexes [J]. J. Huazhong Normal Univ., 2006, 40(1): 55-57
(吴宇, 程翠霞, 施少敏等. 3, 5-二溴水杨醛水杨酰腙及金属M (M=Zn(II)、Cu(II)、Ni(II)) 配合物的合成与结构特征 [J]. 华中师范大学学报, 2006, 40(1): 55-57)
[5] Yang J G, Pan F Y, Li J M. Synthesis, characterization, crystal structure and antibacterial activities of copper (II) complex with 2'-(2-Thienylidene)-cydroxybenzoylhydrazide [J]. Chin. J. Inorg. Chem., 2005, 21(10): 1593-1596
(杨健国, 潘富友, 李钧敏. Cu(II)-2'-(2-噻吩亚甲基) 水杨酰腙Schiff 碱配合物的合成、表征、晶体结构及抑菌活性研究 [J]. 无机化学学报, 2005, 21(10): 1593-1596)
[6] Lei L, Xiong G X, Wang Y Z. Research progress of Schiff bases and their complexes [J]. New Chem. Mater., 2012, 40(2): 16-20
(雷亮, 熊国宣, 王银柱. 席夫碱及其金属配合物性能研究进展 [J]. 化工新型材料, 2012, 40(2): 16-20)
[7] Song S, Song M, Zhang H M, et al. Crystal structure and antibacterial activity of 2-amino-benzothiazole complexes [J]. Chem. Res., 2010, 21(6): 21-25
(宋霜, 宋敏, 张怀敏等. 2-氨基苯并噻唑配合物的晶体结构及抑菌活性 [J]. 化学研究, 2010, 21(6): 21-25)
[8] Hu Q S, Hu J C, Gao Y J. Corrosion inhibition and adsorption of lauryl-imidazolines for Q235 steel [J]. J. Chem. Ind. Eng., 2011, 62(1): 147-155
(胡松青, 胡建春, 高元军等. 月桂基咪唑啉对Q235钢的缓蚀吸附作用 [J]. 化工学报, 2011, 62(1): 147-155)
[9] Xu X L, Huang B H, Liu J. Corrosion inhibition of pyrrolidonium ionic liquids for mild steel in HCL solution [J]. J. Chin. Soc. Corros. Prot., 2011, 31(5): 336-340
(徐效陵, 黄宝华, 刘军. 盐酸溶液中吡咯烷酮离子液体对碳钢的缓蚀性能 [J]. 中国腐蚀与防护学报, 2011, 31(5): 336-340)
[10] Liao Q Q, Chen Y Q, Yan A J, et al. The corrosion inhibition of alkyl imidazoline on carbon steel in amidosulphuric acid solution[J]. J. Chin. Soc. Corros. Prot., 2011, 31(5): 356-361
(廖强强, 陈亚琼, 闫爱军等. 氨基磺酸溶液中烷基咪唑啉对碳钢的缓蚀作用 [J]. 中国腐蚀与防护学报, 2011, 31(5): 356-361)
[11] Feng L J, Yang H Y, Wang F H. Experimental and theoretical studies for corrosion inhibition of carbon steel by imidazoline derivative in 5% NaCl saturated Ca(OH)2 solution [J]. Electrochim. Acta, 2011, 58: 427-436
[12] Hu S Q, Guo A L, Geng Y F, et al. Synergistic effect of 2-oleyl-1-oleylamidoethyl imidazoline ammonium methylsulfate and halide ions on the inhibition of mild steel in HCl [J]. Mater. Chem. Phys., 2012, 134: 54-60
[13] Zhang J, Qiao G M, Hu S Q, et al. Theoretical evaluation of corrosion inhibition performance of imidazoline compounds with different hydrophilic groups [J]. Corros. Sci., 2011, 53: 147-152
[14] Khaled K F. Experimental and molecular dynamics study on the inhibition performance of some nitrogen containing compounds for iron corrosion [J]. Mater. Chem. Phys., 2010, 124: 760-767
[15] Liu B Y, Liu Z, Han G C, et al. Corrosion inhibition and adsorption behavior of 2-((dehydroabietylamine) methyl)-6-methoxyphenol on mild steel surface in seawater [J]. Thin Solid Films, 2011, 519: 7836-7844
[16] Tang Y M, Yang X Y, Yang W Z, et al. Experimental and molecular dynamics studies on corrosion inhibition of mild steel by 2-amino-5-phenyl-1,3,4-thiadiazole [J]. Corros. Sci., 2010, 52: 242-249
[17] Khaled K F. Adsorption and inhibitive properties of a new synthesized guanidine derivative on corrosion of copper in 0.5 M H2SO4 [J]. App. Surf. Sci., 2008, 255: 1811-1818
[18] Zeng J P, Zhang J Y, Gong X D. Molecular dynamics simulation of interaction between benzotriazoles and cuprous oxide crystal [J]. Comput. Theor. Chem., 2011, 963: 110-114
[19] Xia S W, Qiu M, Yu L M, et al. Molecular dynamics and density functional theory study on relationship between structure of imidazoline derivatives and inhibition performance [J]. Corros. Sci., 2008, 50: 2021-2029
[20] Khaled K F. Electrochemical behavior of nickel in nitric acid and its corrosion inhibition using some thiosemicarbazone derivatives [J]. Electrochim. Acta, 2010, 55: 5375-5383
[21] Shi W Y, Ding C, Yan J L, et al. Molecular dynamics simulation for interaction of PESA and acrylic copolymers with calcite crystal surfaces [J]. Desalination, 2012, 291: 8-14
[1] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[3] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[4] 许萍,张硕,司帅,张雅君,汪长征. EPS的主要成分-蛋白质、多糖抑制碳钢腐蚀机理研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 176-184.
[5] 钟显康,扈俊颖. 恒定的pH值和Fe2+浓度下X65碳钢的CO2腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(6): 573-578.
[6] 王力, 郭春云, 肖葵, 吐尔逊·斯拉依丁, 董超芳, 李晓刚. Q235和Q450钢在吐鲁番干热大气环境中长周期暴晒时的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[7] 乔越, 朱志平, 杨磊, 刘志峰. 高温状态下锅炉给水氧化还原电位监测与模拟实验研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 487-494.
[8] 刘峥, 李海莹, 王浩, 赵永, 谢思维, 张淑芬. 分子动力学模拟水溶液中席夫碱基表面活性剂在Zn表面的吸附行为[J]. 中国腐蚀与防护学报, 2018, 38(4): 381-390.
[9] 彭晚军, 丁纪恒, 陈浩, 余海斌. 生物基缓蚀剂糠醇缩水甘油醚的缓蚀性能及机理[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
[10] 钱备, 刘成宝, 宋祖伟, 任俊锋. 纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
[11] 偶国富, 赵露露, 王凯, 王宽心, 金浩哲. 10#碳钢在HCl-H2O环境中的露点腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 33-38.
[12] 张杰, 胡秀华, 郑传波, 段继周, 侯保荣. 海洋微藻环境中钙质层对Q235碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[13] 孟晓波,蒋武斌,廖永力,李锐海,郑志军,高岩. 输电杆塔材料在模拟工业环境中的大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 460-466.
[14] 程庆利,陶彬,刘栓,刘全桢,张卫华,田松柏,王立平. 原油沉积水对Q235B碳钢的腐蚀影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 126-134.
[15] 赵景茂,赵起锋,姜瑞景. 咪唑啉缓蚀剂在CO2/H2S共存体系中的构效关系研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 142-147.