Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (1): 95-100    DOI: 10.11902/1005.4537.2013.057
  本期目录 | 过刊浏览 |
Cl-在钢筋混凝土板一维双向扩散的分离变量法解答
岳著文(), 李镜培, 杨博, 邵伟, 吕韬
同济大学地下建筑与工程系 岩土及地下工程教育部重点实验室 上海 200092
Solve Chloride Ions Diffusion Problem by Separation Variable Method for Reinforced Concrete Slab in Marine Environment
YUE Zhuwen(), LI Jingpei, YANG Bo, SHAO Wei, LV Tao
Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
全文: PDF(654 KB)   HTML
摘要: 

针对钢筋混凝土板双侧Cl-侵蚀,建立其一维扩散方程,采用分离变量法进行求解,得到广义解答,通过与误差函数和数值解答进行对比,证明该解答是古典解。通过算例分析得出,双向海水侵蚀导致Cl-扩散较快,但并未产生浓度叠加现象;混凝土板一侧表面Cl-浓度升高与另一侧产生浓度梯度,增加扩散动力,加快Cl-扩散;对于扩散系数不同导致的非对称扩散,Cl-浓度梯度在扩散系数变化处发生突变,但扩散浓度连续。

关键词 混凝土Cl-双向扩散分离变量法    
Abstract

Concrete slab as a part of marine engineering structure should surly be suffered from chloride ions corrosion. The relevant chloride ions diffusion problem in a concrete slab immersed in seawater was solved by means of separation variable method in this paper. In comparison with the solutions obtained by error function and numerical calculation methods, we proved this generalized solution was the correct answer for the bilateral chloride ion diffusion in a concrete slab. According to calculation and analysis, we found that the bilateral diffusion would cause greater harm than one side diffusion, but concentration superposition would not occur; chloride ion diffusion rate would speed up when concentration gradient increase caused by the increasing chloride ion concentration at one side surface. A mutation of chloride ion concentration gradient might occur where diffusion coefficient changed, but the chloride ion concentration distribution kept continuous.

Key wordsconcrete    Cl-    bilateral diffusion    separation variable method
收稿日期: 2013-07-18     
ZTFLH:  TU528  
基金资助:国家自然科学基金项目 (51178341) 资助
作者简介: null

岳著文,男,1986年生,博士生,研究方向为桩基工程及其耐久性研究

引用本文:

岳著文, 李镜培, 杨博, 邵伟, 吕韬. Cl-在钢筋混凝土板一维双向扩散的分离变量法解答[J]. 中国腐蚀与防护学报, 2014, 34(1): 95-100.
Zhuwen YUE, Jingpei LI, Bo YANG, Wei SHAO, Tao LV. Solve Chloride Ions Diffusion Problem by Separation Variable Method for Reinforced Concrete Slab in Marine Environment. Journal of Chinese Society for Corrosion and protection, 2014, 34(1): 95-100.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.057      或      https://www.jcscp.org/CN/Y2014/V34/I1/95

Composition of
cementitious material
Tide
zone
Splash
zone
Atmospheric
zone
Cement 0.6~0.7 0.6~0.7 0.35~0.45
Cement+Slag powder 0.7~0.9 0.7~0.9 0.45~0.55
Cement+Fly ash 0.7~0.9 0.7~0.9 0.45~0.55
Cement+Silica fume 0.6~0.7 0.6~0.7 0.45~0.55
Cement+Slag powder+
Fly ash
0.7~0.9 0.7~0.9 0.45~0.55
Cement+Slag powder+
Fly ash+Silica fume
0.7~0.9 0.7~0.9 0.45~0.55
表1  表面Cl-浓度取值范围
Service environment Limited content of Cl-/%
Reinforced
concrete
Wet
environment
General
engineering
0.15
Bridge
foundation
0.08
Dry
environment
General
engineering
0.3
Bridge foundation 0.15
Prestressed concrete 0.06
表2  新拌混凝土Cl-含量限值
图1  3种方法得到的对称扩散结果
图2  分离变量法对称解答
图3  对称扩散与单侧扩散
图4  边界条件不同导致的非对称扩散
图5  扩散系数不同导致的非对称扩散
[1] Ann K Y, Song H. Chloride threshold level for corrosion of steel in concrete[J]. Corros. Sci., 2007, 49(11): 4113-4133
[2] Collepardi M, Marcialis A, Turriziani R. Penetration of chloride ions into cement pastes and concretes[J]. J. Am. Ceram. Soc., 1972, 55(10): 534-535
[3] Collepardi M, Marcialis A, Turriziani R. The kinetics of penetration of chloride ions into the concrete[J]. Il Cemento, 1970, 67(4): 157-164
[4] Tang L P, Gulikers J. On the mathematics of time-dependent apparent chloride diffusion coefficient in concrete[J]. Cem. Concr. Res., 2007, 37(4): 589-595
[5] Yu H F, Sun W, Yan L H, et al. Study on prediction of concrete service life I—Theoretical model[J]. J. Chin. Ceram. Soc., 2002, 30(6): 686-690
[5] (余红发, 孙伟, 鄢良慧等. 混凝土使用寿命预测方法的研究I—理论模型[J]. 硅酸盐学报, 2002, 30(6): 686-690)
[6] Suryavanshi A K, Swamy R N, Cardew G E. Estimation of diffusion coefficient for chloride ion penetration into structural concrete[J]. ACI Mater. J., 2002, 99(4): 441-449
[7] Yang L F, Chen Z, Wang Y, et al. Boundary element method for analysis of two-dimensional chloride diffusion in concrete[J]. J. Chin. Ceram. Soc., 2009, 37(7): 1110-1117
[7] (杨绿峰, 陈正, 王燚等. 混凝土中氯离子二维扩散分析的边界元法[J]. 硅酸盐学报, 2009, 37(7): 1110-1117)
[8] Li X M, Wu F, Huang Z H. Analytical solution to chloride diffusion equation on concrete[J]. Concrete, 2009, (10): 30-33
[8] (李秀梅, 吴锋, 黄哲华. 混凝土中氯离子扩散方程的解析解[J]. 混凝土. 2009, (10): 30-33)
[9] Jin W L,Yuan Y S,Wei J,et al. Concrete Structure Durability Theory and Design Method in a Chloride Environment[M]. Beijing: Science Press, 2011: 122-124
[9] (金伟良,袁迎曙,卫军等. 氯盐环境下混凝土结构耐久性理论与设计方法[M]. 北京: 科学出版社, 2011: 122-124)
[10] Chen C S. Mathematical Physical Equation[M]. Beijing: Science and Education Press, 2008: 70-108
[10] (陈才生. 数学物理方程[M]. 北京: 科学教育出版社, 2008: 70-108)
[11] Dassault Systèmes Simulia Corp. Abaqus 6.10: Analysis User's Manual, 2010
[12] Shi H S, Wang Q. Research on service life prediction of marine concrete[J]. J. Building Mater., 2004, 7(2): 161-167
[12] (施惠生, 王琼. 海工混凝土使用寿命预测研究[J]. 建筑材料学报, 2004, 7(2): 161-167)
[13] Bamforth P B. The derivation of input data for modelling chloride ingress from eight-year UK coastal exposure trials[J]. Mag. Concr. Res., 1999, 51(2): 87-96
[14] Maage M, Helland S T, Carlsen J E. Chloride penetration in high performance concrete exposed to marine environment [A]. International RILEM Workshop on Durability of High Performance Concrete [C]. Ann Arbor : RILEM Publications SARL, 1994: 194-207
[15] Hobbs D W. Aggregate influence on chloride ion diffusion into concrete[J]. Cem. Concr. Res., 1999, 29(12): 1995-1998
[16] GB/T 50476-2008. Code for durability design of concrete structures[S]
[16] (GB/T 50476-2008. 混凝土结构耐久性设计规范[S])
[17] CCES 01-2004 (2005 revised edition). Guide to durability design and construction of reinforced structures[S]
[17] (CCES 01-2004 (2005年修订版). 混凝土结构耐久性设计与施工指南[S])
[18] Oh B H, Jang S Y. Effects of material and environmental parameters on chloride penetration profiles in concrete structures[J]. Cem. Concr. Res., 2007, 37: 47-53
[1] 何静, 杨纯田, 李中. 建筑行业微生物腐蚀与防护研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[2] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] 邓培昌, 钟杰, 王坤, 胡杰珍, 李子运, 岑楚欣, 沈小涵. 海洋工程装备高空腐蚀重要影响因素Cl-沉降速率研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 474-478.
[4] 闻洋, 熊林, 陈伟, 薛刚, 宋文学. 干湿循环下聚乙烯醇纤维混凝土抗Cl-渗透性能研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[5] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[6] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[7] 陈云翔, 冯丽娟, 蔡建宾, 王璇, 洪毅成, 林德源, 庄建煌, 杨怀玉. 新型复配阻锈剂在混凝土模拟液和试块中对钢筋锈蚀的抑制[J]. 中国腐蚀与防护学报, 2018, 38(4): 343-350.
[8] 田雪凯, 王海龙, 程旭东, 孙晓燕. 混凝土裂缝形态参数对Cl-传输性能影响的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(4): 309-316.
[9] 周霄骋, 崔巧棋, 贾静焕, 刘智勇, 杜翠薇. Cl-浓度对316L不锈钢在碱性NaCl/Na2S溶液中SCC行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[10] 刘栓,周开河,方云辉,徐孝忠,江炯,郭小平,郑文茹,蒲吉斌,王立平. 环境因素对纯Zn在饱和Zn(OH)2溶液中腐蚀行为的影响I—Cl-浓度和pH值[J]. 中国腐蚀与防护学报, 2016, 36(6): 522-528.
[11] 苗伟行,胡文彬,高志明,孔宪刚,赵茹,唐军务. 304不锈钢在海洋环境混凝土模拟液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(6): 543-548.
[12] 张建春,蒋金洋,李阳,施锦杰,左龙飞,王丹芊,麻晗. 耐海水腐蚀钢筋00Cr10MoV在模拟混凝土孔隙液中钝化膜的研究[J]. 中国腐蚀与防护学报, 2016, 36(5): 441-449.
[13] 毛江鸿,金伟良,张华,许晨,夏晋. 海砂混凝土建筑的耐久性提升技术及应用研究[J]. 中国腐蚀与防护学报, 2015, 35(6): 563-570.
[14] 吕晨曦, 魏英华, 李京, 孙超. 聚合物改性砂浆中钢筋的电化学行为及聚合物改性混凝土抗Cl-渗透性[J]. 中国腐蚀与防护学报, 2015, 35(5): 467-473.
[15] 冯兴国,卢向雨,左禹,陈达. 应变对混凝土孔隙液中不锈钢钝化性能影响的电化学研究[J]. 中国腐蚀与防护学报, 2015, 35(4): 372-378.