Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (1): 65-69    DOI: 10.11902/1005.4537.2013.049
  本期目录 | 过刊浏览 |
含水量对连铸铜包钢在大港土壤中腐蚀行为的影响
朱敏, 杜翠薇(), 黄亮, 刘智勇, 赵天亮, 李琼, 李晓刚
北京科技大学腐蚀与防护中心 北京 100083
Influence of Water Contents on Corrosion Behavior of Continuous Casting Copper-clad Steel in Dagang Soil
ZHU Min, DU Cuiwei(), HUANG Liang, LIU Zhiyong, ZHAO Tianliang, LI Qiong, LI Xiaogang
Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(1147 KB)   HTML
摘要: 

采用极化曲线和电化学阻抗技术对连铸铜包钢在含水量20%~30% (质量分数) 的大港滨海盐渍土中的腐蚀电化学行为进行研究。结果表明:埋样初期,连铸铜包钢腐蚀速率大致相等,含水量对其腐蚀行为影响较小,电极过程主要为活化控制;埋样后期,连铸铜包钢腐蚀速率先减小后趋于平稳,这是含水量对电极过程两个相反作用 (氧浓度降低的阻滞作用和环境水化的促进作用) 的综合作用结果,电极过程表现为阴极的氧扩散控制。

关键词 连铸铜包钢含水量大港土壤腐蚀行为    
Abstract

The corrosion behavior of continuous casting copper-clad steel in Dagang soil with 20%~30% water contents was studied by polarization curve measurement and EIS. It is shown that during the initial corrosion stage, the corrosion rates of continuous casting copper-clad steel are almost equal, which imply the water contents have little influence on the corrosion behavior. The control step for corrosion of continuous casting copper-clad steel in the soil is activation polarization process at the initial stage. During the later stage, the corrosion rates of continuous casting copper-clad steel decrease and then tend to be stable with the increase of water contents, which may be due to the synergistic effect of the two opposite factors i.e. the block effect with reducing oxygen and the stimulation effect with environmental water on the electrode process. However the corrosion behavior is mainly affected by oxygen diffusion control.

Key wordscontinuous casting copper-clad steel    water content    Dagang soil    corrosion behavior
收稿日期: 2013-04-08     
ZTFLH:  TG172.4  
基金资助:国家自然科学基金重点项目(51131001);国家自然科学基金项目(51371036) 资助

引用本文:

朱敏, 杜翠薇, 黄亮, 刘智勇, 赵天亮, 李琼, 李晓刚. 含水量对连铸铜包钢在大港土壤中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2014, 34(1): 65-69.
Min ZHU, Cuiwei DU, Liang HUANG, Zhiyong LIU, Tianliang ZHAO, Qiong LI, Xiaogang LI. Influence of Water Contents on Corrosion Behavior of Continuous Casting Copper-clad Steel in Dagang Soil. Journal of Chinese Society for Corrosion and protection, 2014, 34(1): 65-69.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.049      或      https://www.jcscp.org/CN/Y2014/V34/I1/65

图1  连铸铜包钢表面Cu层的原始微观形貌
图2  连铸铜包钢在不同含水量条件下埋样1 d的极化曲线
图3  连铸铜包钢在不同含水量条件下埋样30 d的极化曲线
Water content / % Ecorr / mV Icorr / μAcm-2
20 -0.1600 23.54
25 -0.1599 10.63
30 -0.1678 11.35
表1  极化曲线拟合结果
图4  在不同含水量条件下大港土壤中连铸铜包钢的电化学阻抗谱
图5  EIS等效电路
Water content / % Rs / Ωcm2 Q1-Y0 / Ssecn R1 / Ωcm2 Qdl-Y0 / Ssecn Rt / Ωcm2 W / Ssec0.5
20 22.2 0.000249 2826.9 0.000266 1995.6 ---
25 79.7 --- --- 0.000178 2396.3 0.003933
30 69.4 --- --- 0.000142 2586.2 0.005753
表2  EIS等效电路拟合结果
[1] Zhou P P, Wang S, Li Z Z, et al. Review of corrosion resistant metals for grounding[J]. Elec. Power Constr., 2010, 31(8): 51-54
[1] (周佩朋, 王森, 李志忠等. 耐蚀性金属接地材料研究综述[J]. 电力建设, 2010, 31(8): 51-54)
[2] Weng Y F. Analysis of grounding connection cauterization and the suggestions for material selection[J]. Zhejiang Elec. Power, 2003, (4): 54-56
[2] (翁羽丰. 接地装置腐蚀分析及材料选用建议[J]. 浙江电力, 2003, (4): 54-56)
[3] Li J L. Utility Electrical Grounding Technology[M]. Beijing: China Electric Power Press, 2002
[3] (李景禄. 实用电力接地技术[M]. 北京:中国电力出版社, 2002)
[4] Yang D W, Li J L. Analysis on corrosion and anti-corrosion measure of substation grounding device[J]. Insul. Surg. Arresters, 2004, (2): 43-46
[4] (杨道武, 李景禄. 发电厂变电所接地装置的腐蚀及防腐蚀措施[J]. 电瓷避雷器, 2004, (2): 43-46)
[5] Riemer D, Orazem M. A mathematical model for the cathodic protection of tank bottoms[J]. Corros. Sci., 2005, 47(3): 849-868
[6] Thara A, Shinohara T. Influence of the alloy element on corrosion morphology of the low alloy steels exposed to the atmospheric environments[J]. Corros. Sci., 2005, 47(10): 2589-2598
[7] Hoffmeister H. Modeling of crevice corrosion of pure nickel by coupling of phase and polarization behavior at various pH, chloride, and oxygen levels[J]. Corrosion, 2005, 61(9): 880
[8] Gerwin W, Baumhauer R. Effect of soil parameters on the corrosion of archaeological metal finds[J]. Geoderma, 2000, 96(1): 63-80
[9] Dong C F, Li X G, Wu J W. Review in experimentation and data processing soil corrosion[J]. Corros. Sci. Prot. Technol., 2003, 15: 154-160
[9] (董超芳, 李晓刚, 武俊伟. 土壤腐蚀的实验研究与数据处理[J]. 腐蚀科学与防护技术, 2003, 15: 154-160)
[10] Chen X, Du C W, Li X G, et al. Influences of water content on the corrosion behavior of X70 steel in Dagang saline-alkaline soil[J]. Univ. Sci. Technol. Beijing, 2008, 30(7): 730-734
[10] (陈旭, 杜翠薇, 李晓刚等. 含水量对X70钢在大港滨海盐渍土壤中腐蚀行为的影响[J]. 北京科技大学学报, 2008, 30(7): 730-734)
[11] Yang J P, Di Z, Weng Y J. Study on regional soil corrosiveness in Dagang oil field[J]. Corros. Sci. Prot. Technol., 1995, 7: 275-276
[11] (杨建平, 狄峥, 翁永基. 大港油田区域土壤腐蚀性研究[J]. 腐蚀科学与防护技术, 1995, 7: 275-276)
[12] Cao C N,Zhang J Q. Electrochemical Impedance Spectroscopy[M]. Beijing: Science Press, 2004
[12] (曹楚南,张鉴清. 电化学阻抗谱导论[M]. 北京: 科学出版社, 2004)
[13] Wang Y H, Wang J, Zhang J B. Influences of current density on the properties of micro-arc oxidation coatings on AZ91D Mg alloy[J]. J. Chin. Soc. Corros. Prot., 2005, 25(6): 332-335
[13] (王燕华, 王佳, 张际标. 电流密度对AZ91D镁合金微弧氧化膜性能的影响[J]. 中国腐蚀与防护学报, 2005, 25(6): 332-335)
[14] Liang P, Li X G, Du C W, et al. Effect of dissolved oxygen on corrosion resistance of X80 pipeline steel in NS4 solution[J]. Corros. Sci. Prot. Technol., 2009, 21(1): 20-23
[14] (梁平, 李晓刚, 杜翠薇等. 溶解氧对X80管线钢在NS4溶液中腐蚀行为的影响[J]. 腐蚀科学与防护技术, 2009, 21(1): 20-23)
[15] Li J B, Zuo J E. Influence of temperature and sulfur ion on carbon dioxide corrosion behavior of N80 steel[J]. Corros. Sci. Prot. Technol., 2009, 21(1): 44-47
[15] (李金波, 左剑恶. 温度和硫离子对N80钢CO2腐蚀电化学行为的影响[J]. 腐蚀科学与防护技术, 2009, 21(1): 44-47)
[16] Wei B M. Theory and Application of Metal Corrosion[M]. Beijing: Chemistry Industry Press, 2004
[16] (魏宝明. 金属腐蚀理论及应用[M]. 北京: 化学工业出版社, 2004)
[17] Li M C, Lin H C, Cao C N. Influence of moisture content on soil corrosion behavior of carbon steel[J]. Corros. Sci. Prot. Technol., 2000, 14(4): 218-221
[17] (李谋成, 林海潮, 曹楚南. 湿度对钢铁材料在中性土壤中腐蚀行为的影响[J]. 腐蚀科学与防护技术, 2000, 14(4): 218-221)
[18] Gardiner C P, Melchers R E. Corrosion of mild steel in porous media[J]. Corros. Sci., 2002, 44: 2459-2478
[19] Nie X H, Li X G, Du C W, et al. EIS analysis of Q235 corrosion in sea-shore salt soil with different water contents[J]. J. Mater. Eng., 2009, 6: 17-19
[19] (聂向辉, 李晓刚, 杜翠微等. Q235钢在不同含水量滨海盐土中腐蚀的电化学阻抗谱分析[J]. 材料工程, 2009, 6: 17-19)
[1] 黄涛, 许春香, 杨丽景, 李福霞, 贾庆功, 宽军, 张正卫, 武晓峰, 王中琪. Zr含量对Mg-3Zn-1Y合金显微组织和腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[2] 李琳, 陈义庆, 高鹏, 艾芳芳, 钟彬, 伞宏宇, 杨颖. 除冰盐环境下桥梁钢的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[3] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[4] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[5] 王新华, 杨永, 陈迎春, 位凯玲. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[6] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[7] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[8] 苏小红,胡会娥,孔小东. W颗粒/Zr41.2Ti13.8Cu12.5Ni10Be22.5基非晶复合材料在3%NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[9] 王勤英,裴芮,西宇辰. 镍基激光熔覆层冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[10] 郭铁明,张延文,秦俊山,宋志涛,董建军,杨新龙,南雪丽. 桥梁钢Q345q在3种模拟大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 319-330.
[11] 黄博博,刘平,刘新宽,梅品修,陈小红. 新型HSn70-1铜网衣两年期海水腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[12] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[13] 王帅星, 杜楠, 刘道新, 肖金华, 邓丹萍. 模拟酸雨作用下红壤含水量对X80钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(2): 147-157.
[14] 张杰, 胡秀华, 郑传波, 段继周, 侯保荣. 海洋微藻环境中钙质层对Q235碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[15] 张子阳,王善林,章恒瑜,柯黎明. AZ31镁合金搅拌摩擦焊接头腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(2): 117-125.